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Analyzing Slightly Inclined Cylindrical Binary Fluid Convection via Higher Order
Dynamic Mode Decomposition∗
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Abstract. An extended dynamical system is considered that shows some striking, very complex spatio-temporal
patterns. Specifically, we consider superhighway patterns that appear in binary fluid convection in
slightly inclined, shallow cylindrical containers. These patterns show a number of parallel thermal
lanes, each containing aligned coherent structures that counterpropagate in adjacent lanes. Several
types of superhighway convection states have been obtained by direct numerical simulation. The
numerical outcomes are analyzed using a recent data processing tool, known as higher order dynamic
mode decomposition, which efficiently identifies relevant spatio-temporal patterns in numerically
computed data.
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1. Introduction. Extended dynamical systems, such as those relevant in pattern formation,
may lead to very complex spatio-temporal patterns that, frequently, can only be obtained via
numerical simulation. Identifying these complex patterns can be very difficult.

Convective flows are of great interest in pattern formation. In binary mixtures, ther-
mal convection promoted by thermal gradients [1] may be enhanced by concentration non-
uniformities sustained by the Soret coupling, i.e., by the generation of concentration fluxes due
to temperature gradients (Soret effect). The components of miscible ordinary two-component
mixtures tend to separate in an imposed thermal gradient, and this separation in turn alters
the driving force for convection, giving rise to a variety of convection patterns when driven
away from equilibrium by external stresses [2, 3, 4]. Many of the interesting effects in Soret-
induced convection originate from the difference in relaxation times between the temperature
and the concentration fields, due to the sharp contrast between thermal and solutal diffu-
sivities. The Soret coefficient ST measures the strength of the Soret coupling, and its sign
determines the behavior of the mixture. With ST > 0, the heavier component of the fluid is
driven in the direction of lower temperature, while with ST < 0, the heavier component mi-
grates toward the hotter boundary. In this paper, we consider thermal convection in a binary

∗Received by the editors September 20, 2021; accepted for publication (in revised form) by J. Moehlis March 21,
2022; published electronically DATE.

https://doi.org/10.1137/21M1447416
Funding: This research was partially supported by Spanish Ministry of Economy and Competitiveness grants

TRA2016-75075-R and FIS017-85794-P.
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fluid layer heated from below with ST > 0, for which the solutal density variations enhance
the thermal density variations and further destabilize the fluid layer heated from below. Since
the concentration gradient also contributes to the convective behavior, the onset of convection
takes place for smaller heating than in the pure fluid case. The driving mechanisms in binary
convection are controlled by two nondimensional numbers: the Rayleigh number Ra, mea-
suring the applied temperature stress, and the separation ratio S, proportional to ST , which
quantifies the solutal driving. Experiments on vertical cylindrical cells performed in the eight-
ies [5, 6] revealed that near onset, the motion is dominated by concentration gradients (Soret
regime), far from threshold, convection selects structures observed in pure fluid convection
(Rayleigh regime), and in the cross-over region, complex time-dependent dynamics arises.

In the physical system considered in this work, in addition to the thermodiffusive effects,
the convective layer will be slightly tilted and a shear mechanism will be present. The effect
of inclination has been widely studied for one-component fluids. Bodenschatz, Pesch, and
Ahlers reviewed the main numerical and experimental results obtained during the eighties
and nineties in extended layers [7]. The initial focus was on the competition between the
longitudinal, transverse, and oblique rolls that arise from the primary bifurcation of the large
scale circulatory flow. Later experimental [8, 9] and numerical [10] studies showed that there
is a very rich variety of spatio-temporal patterns when the inclination angle is varied. Very
recently, Reetz et al. [11, 12] have related the complex time-dependent dynamics observed in
inclined convection far beyond onset with the existence of underlying invariant states of the
Oberbeck–Boussinesq equations. The authors constructed numerically these invariant states,
analyzed their stability, and obtained an extensive bifurcation network connecting them when
both heating and inclination are changed.

In this work, we focus on some unexpected patterns encountered in binary convection when
a flat container is slightly inclined. Among these, superhighway convection (SHC) patterns
have been detected, both experimentally [13] and numerically [14], for appropriate values of
the involved nondimensional parameters (in particular, the Rayleigh number). SHC patterns
arise in the Soret regime, where concentration gradients still contribute significantly to the
dynamics. Consequently, such flows are not observed in the equivalent single component fluid
configuration, even in the case of purely conducting boundaries [15]. In SHC, the temperature
field shows objects that are aligned along the inclination direction in parallel (approximately
straight) lanes and counter–propagate in adjacent lanes. Thus, these patterns are complex but
regular (see the video mentioned in the caption of Figure 4.5). The concentration field, instead,
appears to be fairly irregular to the naked eye, which could even see them as showing spatio-
temporal chaos (see the video mentioned in the caption of Figure 4.6). This is surprising
because the thermal and concentration fields are coupled in the governing equations. In
other words, irregularity in the concentration field should be transferred to the thermal field.
Understanding this apparent contradiction is one of the objects of the present paper.

Some periodic superhighway patterns exhibiting different types of spatio-temporal symme-
tries have been identified. We call them symmetric SHC patterns and they have been found
stable only in small regions of the parameter space. More complex patterns, qualitatively
similar to symmetric superhighways except that they exhibit amplitude modulation, are more
abundant. These patterns will be called modulated SHC patterns and seem to be originated
via Neimark–Sacker bifurcations [16] and further bifurcations of the symmetric SHC states. In
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this paper, we shall consider several representative, numerically obtained patterns for sample
values of the Rayleigh number. Each of these will be analyzed using a recent data processing
tool known as the higher order dynamic mode decomposition (HODMD) [17]. This method
decomposes the thermal and concentration fields as Fourier-like expansions that apply to the
whole spatial distributions simultaneously. The resulting expansions are to be obtained from
a set of spatially discretized snapshots, which are instantaneous portraits of the system at eq-
uispaced values of time. As such, the method represents an improvement of standard dynamic
mode decomposition (DMD) [18] (see also [19, 20, 21]). The main difference between standard
DMD and HODMD is that the former method assumes that each snapshot depends linearly
on the former snapshot, with the linear operator relating both snapshots being constant along
the snapshot sequence. The HODMD method, instead, assumes that each snapshot depends
linearly, not only on the former snapshot, but also on the last d−1 time delayed snapshots, for
some index d > 1. In this sense, HODMD can be seen as a synergic combination of standard
DMD and the advantages [22] that are implicit in Taken’s delay embedding theorem [23]. The
resulting method is quite robust and gives good results in cases in which standard DMD is not
optimal; see [24] for a reader friendly presentation of the method and some of its extensions
and multiple applications. Let us mention here that related thermal convection problems,
invariant under rotation in rotationally symmetric geometries, have been analyzed [25, 26]
using an extension of HODMD, called spatio-temporal Koopman decomposition, developed
in [25]. This extension is able to identify rotating traveling and standing waves. However, in
the present case, even though the cylindrical container is rotationally symmetric, invariance
under rotation is broken by the inclination and plain HODMD is more appropriate.

Using HODMD, the symmetric and modulated superhighways will be analyzed. In par-
ticular, for the former patterns, it is found that the spatio-temporally irregular concentration
distribution is just the superposition of a spatially irregular temporal mean field and a zero-
mean periodic oscillation, which resembles qualitatively the temperature field. Concerning the
modulated superhighways, some of them (in narrow ranges of the Rayleigh number) become
periodic or quasi-periodic for reasonably large time. However, for most values of the Rayleigh
number, modulated orbits turn out to remain very irregular (i.e., neither periodic not quasi-
periodic) even for extremely large time. The nature of these three types of modulated super-
highways, periodic, quasi-periodic, and irregular, will be uncovered by the HODMD method.

Against this background, the remainder of the paper is organized as follows. The HODMD
method will be summarized in section 2, where the relevant formulae to compute the above-
mentioned Fourier-like expansions of the temperature and concentration fields will be given.
The set of equations governing the binary convection in the slightly inclined circular cylin-
der will be described in section 3. The abovementioned patterns, namely the symmetric and
modulated superhighway oscillations, will be analyzed using HODMD in section 4. The paper
ends with some concluding remarks, which will be given in section 5.

2. Higher order dynamic mode decomposition. Although this method applies to the
temporal evolution of general, real or complex, vector fields, here for simplicity we consider
a real scalar vector field, which in the present context can be either the temperature or the
concentration field at the mean slice of the cylindrical container, denoted as q. These fields
will depend on two spatial variables (below, the radial and azimuthal coordinates, r and ϕ,
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respectively) and also on the time variable t. Dynamic mode decomposition methods (either
standard DMD or HODMD) decompose the state variable as

q(r, ϕ, t) ≃
N∑

n=1

anun(r, ϕ) e
(δn+iωn) t,(2.1)

where an ≥ 0 and un are the real mode amplitudes and the (generally complex) conveniently
normalized spatial modes, respectively. Here, the modes will be normalized to exhibit unit
root mean square (RMS) norm. The real scalars appearing in the exponent, δn and ωn, are the
temporal growth rates and frequencies, respectively. Since the data are real, the various terms
in (2.1) must combine in complex conjugate pairs, namely the expansion (2.1) is invariant
under the action

un → un and ωn → −ωn,(2.2)

with the overbar standing hereinafter for the complex conjugate. It must be noted that, as
indicated in (2.1), the left- and right-hand sides of this equation are not generally exactly equal
to each other (due to mode truncation and other numerical artifacts), but only approximately
equal, with the difference between both hopefully very small. When the expansion (2.1) is
applied to several scalar variables that are coupled among each other (namely, the temperature
and concentration fields in the present context), δn and ωn are typically common (at least
very approximately) to these scalar variables. In fact, this will be checked below.

The expansion (2.1) will be obtained in discretized form considering I1 values of the radial
coordinate r, I2 values of the azimuthal coordinate ϕ, and K values of the temporal coordinate
t. Namely, (2.1) is rewritten as

Ti1i2k ≡ q(ri1 , ϕi2 , tk) ≃
N∑

n=1

anun(ri1 , ϕi2) e
(δn+iωn) tk ,(2.3)

where the K discrete values of time must be equispaced, namely such that

tk = (k − 1)∆t,(2.4)

in terms of the temporal gap between consecutive snapshots, ∆t > 0. This is a very important
requirement for the methods used below. Note that replacing tk by t in (2.3) (which involves
temporal interpolation) and applying a convenient interpolation in the radial and azimuthal
coordinates, the original expansion (2.1) is readily recovered from (2.3).

On the other hand, for transient dynamics converging to an attractor, some of the modes
appearing in (2.3) are such that δn = 0 (or |δn| very small) and the remaining ones exhibit
negative δn. Eliminating from the expansion the latter modes permits computing the final
attractor (temporal extrapolation [27]). Also, for transient dynamics departing from unstable
attractors, some of the growth rates are positive and the method permits identifying the
associated instabilities. For attractors, the absolute value of the growth rates is very small. In
this case, a good account of how well the expansions (2.1) and (2.3) give the attractor results
from a semilogarithmic plot of the amplitudes versus the frequencies, which will be called the
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a − ω diagram. This diagram permits identifying the dominant modes, namely those modes
exhibiting the largest amplitudes, which are relevant to uncover the dynamics.

The snapshots appearing in the left-hand side of (2.3) depend on three indexes and, thus,
they constitute a third order, I1× I2×K tensor, called the snapshot tensor. Constructing the
HODMD method for snapshot tensors requires using tensor decomposition methods [28], such
as the so-called higher order singular value decomposition, invented by Tucker [29] in 1966 and
more recently popularized by de Lathauwer, de Moor, and Vandewalle [30]. This approach
is appealing [17] and, moreover, permits constructing a very efficient method to clean noisy
artifacts in experimental databases [31].

In this paper, we shall rely on numerical data showing quite small discretization errors.
Thus, we shall follow a simpler approach relying on a snapshot matrix, which is constructed
from the snapshot tensor as follows. The indexes i1 and i2 are encompassed into a single
index, j. In other words, the snapshot tensor is folded into a snapshot matrix, of order J ×K,
with J = I1 I2. This permits rewriting (2.3) as

Ajk ≡ q(rj , ϕj , tk) ≃
N∑

n=1

anun(rj , ϕj) e
(δn+iωn) tk .(2.5)

The columns of the snapshot matrix A (which are vectors of size J) are called the snapshots
and denoted as vk. Thus, the expansion (2.5) can also be written as

vk ≃
N∑

n=1

anun e
(δn+iωn) tk ,(2.6)

where the J components of the vectors un are un(r1, ϕ1), . . . , un(rJ , ϕJ).
This is the formulation that will be followed below. Once the decomposition (2.5) is

obtained, the original tensor decomposition (2.3) is recovered from (2.5) by splitting the
index j into the original indexes i1 and i2, which results in unfolding the snapshot matrix into
the original snapshot tensor. In this case, the expansion (2.5) could in principle be computed
using standard DMD [20]. However, this method fails when the spatial complexity (defined as
the rank of the set of spatial modes) is strictly smaller than the spectral complexity (defined
as the number of terms that are present in the expansion). In this case, standard DMD can
be substituted by HODMD, which gives good results for arbitrary values of the spatial and
spectral complexities [17].

Standard DMD is a particular case of HODMD for d = 1, where the index d ≥ 1 is defined
below. For the present case of relying on a snapshot matrix, the HODMD method proceeds
in four steps that are summarized here (see [17] for full details):

1. First dimension reduction, which decreases the spatial dimension of the snapshot ma-
trix by taking advantage of the redundancies among the snapshots that are present.
This dimension reduction is performed via truncated singular value decomposition
(SVD) [32], which reduces the spatial dimension from J to J ′ < J . In this way, the
J ×K snapshot matrix is approximated as

A ≃ Atrunc. = UÂ,(2.7)
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where the J×J ′ matrix U is such that U⊤U = the J ′×J ′ unit matrix and the J ′×K
matrix Â is called the reduced snapshot matrix. Note that the SVD singular values
have been absorbed in the matrix Â. The columns of this matrix, denoted as v̂k, are
vectors of size J ′, called the reduced snapshots. Invoking (2.7) leads to

vk ≃ U v̂k.(2.8)

The size of the reduced snapshots (which coincides with the number of retained SVD
singular values), J ′, is determined using well-known [32] SVD formulae. In other
words, the relative RMS error of the truncated approximation of the snapshot matrix
is required to be smaller than some tunable threshold ε1. Thus, we impose that

RRMS error ≡ ∥A−Atrunc.∥Fro
∥A∥Fro

≤ ε1,(2.9)

where ∥ · ∥Fro is the Frobenius norm of the matrices, namely the square root of the
sum of the squares of the elements of each matrix.

2. Modified snapshots and second dimension reduction. We define an index d ≥ 1, which
is a tunable parameter of the method. If d > 1, then each reduced snapshot is en-
larged considering also the former d−1 time-shifted snapshots. The resulting enlarged
snapshots, whose size is d J ′, are called the modified snapshots and defined as

ṽk ≡


v̂k

v̂k+1

. . .
v̂k+d−2

v̂k+d−1

 for k = 1, . . . ,K − d+ 1.(2.10)

Note that, consistently, ṽk = v̂k if d = 1. Now, the modified snapshot matrix (whose
columns are the modified snapshots) is defined as

Ṽ
K−d+1

1 = [ṽ1, ṽ2, . . . , ṽK−d+1].(2.11)

This matrix, whose size is (d J ′) × (K − d + 1), is dimension reduced via truncated
SVD, which gives

Ṽ
K−d+1

1 ≃ Ũ Ṽ
∗K−d+1

1 ,(2.12)

where the (d J ′) × Ñ matrix Ũ is such that Ũ
⊤
Ũ = the Ñ × Ñ unit matrix and

the Ñ × (K + d− 1) matrix Ṽ
∗K−d+1

1 is called the reduced-modified snapshot matrix.

The columns of Ṽ
∗K−d+1

1 are called the reduced-modified snapshots and denoted as
ṽ∗
1, ṽ

∗
2, . . . , ṽ

∗
K−d+1. Thus, (2.12) can be rewritten as

ṽk ≃ Ũ ṽ∗
k for k = 1, . . . ,K − d+ 1.(2.13)

Note that, as in step 1, the SVD singular values have been absorbed in the reduced-
modified snapshots. The number of retained modes (which coincides with the size of
the reduced-modified snapshots), Ñ ≥ J ′, is chosen as we did in step 1, truncating the
SVD with the same tunable threshold, ε1, used there.
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3. Computation of the growth rates and frequencies. The reduced-modified snapshots
computed in the last step are treated via the standard DMD, which relies on the
assumption

ṽ∗
k+1 ≃ R̃

∗
ṽ∗
k for k = 1, . . . ,K − d.(2.14)

The reduced-modified Koopman matrix R̃
∗
is an Ñ × Ñ matrix, which is computed

via the pseudoinverse applied to the overdetermined system of linear equations (2.14).

Once the matrix R̃
∗
has been computed, its eigenvalues and conveniently normalized

(e.g., to exhibit unit RMS norm) eigenvectors, µ1, . . . , µÑ
and ũ∗

1, . . . , ũ
∗
Ñ
, respectively,

in conjunction with (2.14), lead to the following approximation of the reduced-modified
snapshots:

ṽ∗
k ≃

Ñ∑
n=1

ã∗nũ
∗
ne

(δn+iωn) tk ,(2.15)

where

δn + iωn =
1

∆t
logµn,(2.16)

with the temporal distance between snapshots, ∆t, as defined in (2.4).
4. Computation of the expansion (2.6). Premultiplying (2.15) by Ũ and invoking (2.13)

lead to the counterpart of (2.15) for the reduced-modified snapshots, as

ṽk =
Ñ∑

n=1

ã∗nũne
(δn+iωn)tk ,(2.17)

where

ũn = Ũ ũ∗
n.(2.18)

Now, invoking (2.10), the first J ′ elements in the expansion (2.17) give the counterpart
of this expansion for the reduced snapshots, namely

v̂k =

Ñ∑
n=1

ânûne
(δn+iωn) tk ,(2.19)

where the reduced modes ûn are obtained retaining the first J ′ components in û∗
n,

and rescaling the resulting modes to exhibit unit RMS norm. The reduced mode
amplitudes ân are calculated via least squares fitting between the left- and right-hand
sides of (2.19) using the reduced snapshots v̂k computed in step 1. In addition, the
expansion (2.19) is truncated retaining in the right-hand side only those modes such
that

ân
âmax

≥ ε2,(2.20)
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where ε2 is a tunable threshold and âmax is the maximum value of the reduced mode
amplitudes. This defines the number of modes to be retained in (2.19), which is such
that N ≤ Ñ . Thus, the expansion (2.19) is rewritten as

v̂k =
N∑

n=1

ânûne
(δn+iωn) tk .(2.21)

Finally, premultiplying the expansion (2.21) by the matrix U appearing in (2.8) leads
to the expansion (2.6), where the modes and the amplitudes are given by

un =
ân
an

U û(2.22)

and

an =
|ân|√
J
∥U û∥2.(2.23)

Here, as above, J is the number of grid points and ∥·∥2 denotes Euclidean norm. Note
that the amplitudes an are real and ≥ 0 and the modes exhibit unit RMS norm.

As defined above, the growth rates and frequencies, δn and ωn, are precisely those com-
puted in step 3 and their number, N , coincides with the spectral complexity of the computed
expansion, which generally increases as the index d is increased. On the other hand, the
spatial complexity of the computed expansion is J ′ for all d. Therefore, taking appropriate
d > 1 generally increases the spectral complexity, which permits dealing with cases in which
the spectral complexity is larger than the spatial complexity, as anticipated.

We insist that the truncated expansions considered above are only approximations of the
actual dynamics. The error of this approximation will be measured in terms of the relative
RMS error, defined for the discrete approximations as we did in (2.9), namely

RRMS error =
∥Aapprox. −Aexact∥Fro

∥Aexact∥Fro
,(2.24)

where Aapprox. denotes the snapshot matrix approximated by the method and, as above, the
norm ∥ · ∥Fro is the Frobenius norm.

As described, the HODMD method depends on three tunable parameters, namely the
dimension reduction and mode truncation thresholds, ε1 and ε2, respectively, and the index
d. The threshold ε1 should be chosen somewhat larger than the relative RMS accuracy of
the numerical solver, and ε2 as comparable to the relative RMS accuracy that is sought. In
the applications below, the relative RMS error of the HODMD reconstruction, as defined in
(2.24), will be intended to be ∼ 10−3. The index d will be selected to somewhat minimize the
relative RMS reconstruction error. Let us anticipate here that the selection of d is not critical.
In other words, the plot of the relative RMS error versus d is fairly flat near the minimum.

Concerning the temporal gap between consecutive snapshots, ∆t, and the timespan in
which the method will be applied (which is (K − 1)∆t, where K is the number of snapshots)
we consider the following:

• In order to avoid aliasing [33], ∆t must be small (i.e., four or five times smaller)
compared to the smallest involved period.

• In order to capture sufficient information, the timespan must be somewhat large (i.e.,
1.5 times larger) than the largest involved period.
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3. Binary convection in a slightly inclined cylinder. We consider the Boussinesq binary-
fluid convection in a cylindrical cell of height H and radius R, slightly inclined at an angle
α with respect to the horizontal. The cylinder is heated from below, with a temperature
difference between the lids equal to ∆T . The whole boundary is impermeable and nonslip,
with fixed temperature at the lids, while the lateral wall is assumed to be thermally insulated.
We use a Cartesian coordinate system with origin at the center of the hotter lid, the z axis
along the axis of the cylinder, and the x axis along the inclination direction. Thus, the
gravitational acceleration is contained in the x − z plane (see Figure 3.1) and given by g =
g sinα ex − g cosα ez, where ex and ez are unit vectors along the x and z axes, respectively.
The angle α is small, meaning that the component of the gravity along the inclination of the
cell is much smaller than the gravity itself.

The density varies linearly with the temperature, T , and the concentration of the denser
component, C, as

ρ = ρ∗ [1− γ (T − T ∗) + β (C − C∗)],(3.1)

where γ > 0 and β > 0 are the thermal and concentration expansion coefficients, respectively,
T ∗ and C∗ are the mean values of T and C, respectively, and ρ∗ is the density at T = T ∗ and
C = C∗. The mass flux J for a binary mixture can be written as

J = −ρ∗D [C∗ (1− C∗)ST∇T +∇C],

where D is the mass diffusivity and ST is the Soret coefficient. The governing equations of the
problem reflect the incompressibility condition, the mass and heat conservation laws, and the
Navier–Stokes equations in the Boussinesq approximation, which treats all fluid properties as
constant, except for the density in the buoyancy force. They are given by

∇ · u = 0,(3.2a)

∂tT + (u · ∇)T = w
∆T

H
+ κ∇2T,(3.2b)

∂tC + (u · ∇)C = D [C∗ (1− C∗)ST∇2T +∇2C],(3.2c)

∂tu+ (u · ∇)u = −∇π + ν∇2u+ (−γ T + β C)g,(3.2d)

where u denotes the velocity field, w is its z component, π is the kinematic pressure including
the gravitational contribution, κ is the thermal diffusivity, and ν is the kinematic viscosity.

In addition, we split the temperature and concentration fields, T and C, as a linear profile
in z plus perturbations, Θ′ and Σ′, as

g
α

x y

z

Figure 3.1. Sketch showing the geometry of the cell and the choice of axis orientation.
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T = T ∗ +∆T

(
1

2
− z

H

)
+Θ′,(3.3a)

C = C∗ − C∗ (1− C∗)ST∆T

(
1

2
− z

H

)
+Σ′.(3.3b)

With this decomposition the mass flux J depends only on the gradient of Θ′ and Σ′. Any
term in the Navier–Stokes equations with a factor ρ can be split into three terms, the leading
order term with only a factor ρ∗, and two terms with factors depending on T and C. If the
leading order term is not a gradient, then this term is retained and the remaining two terms
are neglected, while if the leading order term is a gradient, then this term is absorbed into
the pressure gradient and the remaining two terms are retained.

In this paper, we present results obtained by solving numerically the nondimensional
equations describing inclined binary fluid convection, which are omitted here but are discussed
in detail in [14]. These equations are obtained from (3.2) by scaling lengths with the height
of the cylinder H, time with the thermal diffusion time H2/κ, temperature with ∆T , and
concentration with ∆C = C∗(1−C∗)ST ∆T . This value of ∆C is the difference between the
concentration at top and bottom lids that would appear in the quiescent state in a noninclined
cylinder heated from below when the temperature difference between lids is ∆T .

The resulting system of nondimensional equations depends on the inclination angle α, the
aspect ratio Γ = R/H, and four dimensionless parameters, namely the Rayleigh number Ra
that provides a dimensionless measure of the vertical force imposed temperature difference
∆T , the separation ratio S that measures the ratio of the concentration contribution to the
buoyancy force due to cross-diffusion, the Prandtl and Lewis numbers σ, τ , respectively, and
the aspect ratio Γ = R/H. These four parameters are defined as

Ra =
γ g∆T H3

κ ν
, S = C∗(1− C∗)

β

γ
ST , σ =

ν

κ
, τ =

D

κ
.

The values of the dimensionless parameters used in this paper, which correspond to the binary
mixture used in the experiment described in [13], will include several values of Ra and the
following fixed values of the remaining parameters:

α = 0.024 rad, Γ = 5, S = 0.13, σ = 16, τ = 0.011.(3.4)

Notice that, since the whole boundary is impermeable (J · n = 0 at the boundaries) the
spatial mean value of the concentration remains constant during the temporal evolution. When
using the nondimensional equations, the value of the scaled fluctuation of the concentration
Σ = Σ′/∆C has a spatial mean value ⟨Σ⟩ that is fixed by the initial condition. In these
equations, the deviation of the concentration field from this spatial mean value, which will be
denoted by Σ̃ = Σ− ⟨Σ⟩, corresponds to the rescaled deviation of the physical concentration
with respect to the spatial mean value C∗ plus the linear profile.

The nondimensionalized system of equations and boundary conditions has been solved
numerically using the algorithm described in [34]. To integrate the equations in time, we
use the second order time-splitting method proposed in [35] combined with a pseudospectral
method for the spatial discretization, Galerkin–Fourier in the azimuthal coordinate ϕ, and
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Chebyshev collocation in r and z. More details about the derivation of the equations and the
numerical method can be found in some previous works in the same or related configurations
[14, 36, 37].

Equations and boundary conditions are equivariant under the group of symmetries G
that contains the transformations {I,R3D

1 , R3D
2 , R3D

3 }, where I stands for the identity, R3D
1

is a reflection with respect to the middle longitudinal vertical plane (y = 0), R3D
2 is a point

symmetry with respect to the center of the cylinder, and R3D
3 , which is the composition of

the previous transformations, is a rotation by π about the line x = 0, z = 1/2, the diameter
parallel to the y axis located in the center of the cylinder. These transformations act on
the dimensionless cylindrical components of the velocity field u, v, w and deviation of the
dimensionaless temperature Θ and concentration Σ̃ defined above as follows:

R3D
1 : (r, ϕ, z) → (r,−ϕ, z), (u, v, w,Θ, Σ̃) → (u,−v, w,Θ, Σ̃),

R3D
2 : (r, ϕ, z) → (r, π + ϕ, 1− z), (u, v, w,Θ, Σ̃) → (u, v,−w,−Θ,−Σ̃),

R3D
3 : (r, ϕ, z) → (r, π − ϕ, 1− z), (u, v, w,Θ, Σ̃) → (u,−v,−w,−Θ,−Σ̃).

As we shall apply the HODMD method to the temperature and concentration fields at
the midheight plane of the cylindrical container z = 1/2, it is important to bear in mind the
action of these transformations at this plane, which are

R1 : (r, ϕ) → (r,−ϕ), (Θ, Σ̃) → (Θ, Σ̃),

R2 : (r, ϕ) → (r, π + ϕ), (Θ, Σ̃) → (−Θ,−Σ̃),

R3 : (r, ϕ) → (r, π − ϕ), (Θ, Σ̃) → (−Θ,−Σ̃)

in polar coordinates, while in rectangular coordinates they read as

R1 : (x, y) → (x,−y), (Θ, Σ̃) → (Θ, Σ̃),

R2 : (x, y) → (−x,−y), (Θ, Σ̃) → (−Θ,−Σ̃),

R3 : (x, y) → (−x, y), (Θ, Σ̃) → (−Θ,−Σ̃).

Large scale steady flow. In the slightly inclined flat cylinder we are considering here,
contrary to what happens in a purely horizontal container, the basic flow that arises for small
heating (i.e., moderate Rayleigh number) is not a quiescent state. Instead, the basic state is an
almost horizontal circulatory shear motion of the fluid layer, known as large scale steady flow
(LSSF). The warm fluid near the lower lid of the cylinder moves uphill (to negative x), almost
parallel to the lid, and, when it arrives to the lateral boundary, it moves upward generating
a narrow boundary layer. Then, the fluid moves almost parallel to the upper lid downhill (to
positive x), and the cooler fluid sinks downward.

The temperature and concentration distributions at the midplane, z = 0.5, for the present
LSSF are depicted in Figure 3.2. As can be seen in plot (a), the temperature departure from
the vertically linear profile is very small outside the lateral boundary layers. Plot (b) shows
that, instead, the concentration field of the heavier component varies monotonously along the
inclination. Also, we observe that the denser component of the mixture accumulates downhill,
as expected from the Soret effect for a mixture with a positive value of the separation ratio
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Figure 3.2. Contours of (a) the temperature and (b) the concentration fields for the LSSF state at z = 0.5
for Ra = 1600. In these and in the remaining contour plots in the paper, the color scale for both the temperature
and concentration goes from blue (for smaller values) to red (for larger values).

S. This solution is invariant under the action of R3D
1 , R3D

2 , and R3D
3 considered above. Here-

inafter, we call C the rescaled concentration field obtained from the numerical calculations,
i.e., C = −(12 − z) + Σ; then at the midplane of the cell, z = 0.5, the concentration is C = Σ.

4. Results: Application of HODMD to the anaylysis of SHC patterns. In the various
applications of the HODMD method below, this method will be applied to the time-dependent
temperature Θ and concentration of the heavier component C fields at the midplane of the
cell, z = 0.5. When seeking attractors, we disregard transient behavior by first integrating the
system along very large timespans. After this, we set t = 0 and begin collecting snapshots.

Consistently with the discretization used in the numerical solver, in this x − y plane
we use a polar coordinate system, with the radial and the azimuthal coordinates defined as
r =

√
x2 + y2 and ϕ = tan−1(x/y), respectively. The counterparts of (2.1) and (2.3) for the

temperature and concentration are

Θ(r, ϕ, t) =
N∑

n=1

aΘnΘn(r, ϕ) e
(δn+iωn) t,(4.1)

C(r, ϕ, t) =
N∑

n=1

aCnCn(r, ϕ) e
(δn+iωn) t,(4.2)

and

Θ(ri1 , ϕi2 , tk) =
N∑

n=1

aΘnΘn(ri1 , ϕi2) e
(δn+iωn) tk ,(4.3)

C(ri1 , ϕi2 , tk) =

N∑
n=1

aCnCn(ri1 , ϕi2) e
(δn+iωn) tk ,(4.4)

respectively. In the expansions (4.1)–(4.4), the amplitudes and modes are different for the
temperature and concentration, but the growth rates and frequencies, δn and ωn, respectively,
coincide for both fields with great precision, in spite of the fact that the HODMD method is
applied separately to the temperature and concentration fields. The discretized expansions
(4.3) and (4.4) will be obtained using I1 = 101 Chebyshev collocation points in the radial
direction and I2 = 150 equispaced points in the azimuthal coordinate. The thermal and
concentration modes will be normalized such that they exhibit unit RMS norm, namely
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∥Θn∥2√
I1 I2

=
∥Cn∥2√
I1 I2

= 1,(4.5)

where ∥ · ∥2 denotes the usual Euclidean norm, as in (2.23).

4.1. Symmetric superhighway convection at Ra = 1610. As anticipated, there are sev-
eral branches of symmetric SHC states, i.e., the temperature field shows objects that are
aligned along the inclination direction in approximately parallel lanes and counterpropagate
periodically in adjacent lanes. These states differ from each other in the spatio-temporal
symmetries they exhibit.

To be explicit, if we denote a solution by Ψ(r, ϕ, z, t) = (u, v, w,Θ,Σ),
• type I symmetric SHC has the spatio-temporal symmetry

R3D
2 Ψ(r, ϕ, z, t) = Ψ(r, ϕ, z, t+ T/2),

• type II symmetric SHC has the spatio-temporal symmetry

R3D
1 Ψ(r, ϕ, z, t) = Ψ(r, ϕ, z, t+ T/2),

• type III symmetric SHC is a periodic R3D
2 invariant state

R3D
2 Ψ(r, ϕ, z, t) = Ψ(r, ϕ, z, t),

• type IV symmetric SHC is a periodic R3D
1 invariant state

R3D
1 Ψ(r, ϕ, z, t) = Ψ(r, ϕ, z, t).

Although there are four types of these solutions, we focus on the stable type I SHC that we
have obtained forRa = 1610 and the mentioned value of the physical and geometric parameters
(3.4). The period of this periodic SHC is T = 2π/ω1 ≃ 4.166, where the fundamental frequency
ω1 = 1.5082 will be calculated below. The evolution of the temperature and concentration at a
representative interior point at mid height is given in Figure 4.1. As can be seen, the tempera-
ture shows an almost monochromatic oscillation around its mean value, and the concentration
exhibits a less monochromatic oscillation. These statements will be confirmed below.

Figure 4.1. Temporal evolution of (a) temperature Θ and (b) concentration C at the mid-height point
r = R/2, ϕ = 45◦, in nondimensional units, for the type I SHC oscillation that is obtained for Ra = 1610.
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Figure 4.2. Type I SHC oscillation obtained for Ra = 1610: contour plots of (a) Θ and (b) C at the
midplane of the cylinder for four equispaced snapshots along a cycle of the SHC state obtained by numerical
simulation at Ra = 1610.

Several representative snapshots along one oscillation cycle, 0 ≤ t ≤ T , are given in
Figure 4.2. As can be seen in plot (a), the temperature field exhibits a well-defined (super-
highway) pattern, in which roughly round spots counterpropagate along eight well-defined,
almost vertical lines in the plots, namely along the direction of inclination of the cylinder (x
axis). The red spots (which are hotter) move uphill and the colder blue spots move downhill.
Superposed to that displacement, the spots exhibit a slight lateral oscillation (y axis), giving
rise to a global zig-zag motion [14]. In addition, a boundary layer is also seen in this figure,
where the fluid is hot in the upper side of the figure and cold in the lower side. The concen-
tration field considered in plot (b), instead, exhibits a much less defined structure, in which
the concentration is smaller in the upper side and larger in the lower side of the cylinder. The
dynamics for the concentration appears to be fairly irregular, which is intriguing because the
(temporal) dynamics is strictly periodic. In fact, we can only observe in the pattern the pres-
ence of small bubble-like localized structures, which counterpropagate along the same eight
vertical lines that are observed for the temperature. The blue/lighter bubbles are located near
the red spots of temperature and travel uphill, while the red/denser bubbles are located near
the blue spots of temperature and travel downhill.

Notice how the symmetry R3D
2 Ψ(r, ϕ, z, t) = Ψ(r, ϕ, z, t + T/2) can be easily appreciated

through a close look of the snapshots plotted in Figure 4.2. For example, the snapshots at the
midplane of the temperature field at t = 0 and t = T/2 satisfy Θ(r, ϕ+π, t) = −Θ(r, ϕ, t+T/2),
in agreement with the symmetry of the solution. In this plane, the mean value of temperature
Θ is zero, and that of concentration is C̄0.

Let us now apply the HODMD method to this type of solution, discussing the information
provided by this type of decomposition. In the application of the method, we take the following
values of the tunable parameters, namely the index d and the dimension reduction and mode
truncation thresholds, ε1 and ε2, respectively:

1 ≤ d ≤ 10, ε1 = 10−5, ε2 = 10−3.(4.6)
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The number of snapshots is 50 in the time interval 0 ≤ t ≤ 5, which is slightly larger than the
period of the cycle (see Figure 4.1). Note that the index d is taken in a wide interval, obtaining
essentially the same results, which illustrates the robustness of the method. Also, the value
d = 1 already gives very good results, which is due to the fact that the spatial and spectral
complexities coincide in the present case. Since the data are taken in the attractor, the values
of the growth rates δn in the expansions (4.1)–(4.2) are both very small (namely, |δn| ≤ 10−5

for both the temperature and concentration) and we concentrate only on the frequencies ωn.
The relative RMS reconstruction error, according to (2.24), is ∼ 1.6 ·10−4 for the temperature
field and ∼ 4 · 10−4 for the concentration field, retaining seven modes in both cases, which
exhibit the same values of the frequencies with great precision (five significant digits). It
must be noted that the numbers of modes retained for reconstructing the temperature and
concentration fields do not generally coincide because these fields are treated separately by
the HODMD method. However, these numbers of modes do coincide in the present case.

The relevant amplitude versus frequency (a−ω) diagrams for the temperature and concen-
tration fields are given in Figure 4.3, where it can be seen that the amplitudes decay spectrally
for both the temperature and concentration. This would be more clearly seen if higher order
harmonics were considered in this plot (by decreasing the value of the mode truncation thresh-
old, ε2; see (4.6)), which is not done here for the sake of brevity. Also, the expansions for
both the temperature and concentration contain a (real) mode with ω = 0, which corresponds
to the temporal mean fields, and three pairs of complex conjugate modes with ωn ̸= 0, which
give the oscillations around the mean fields. The ratio of the amplitudes of the dominant os-
cillatory modes to the next oscillatory modes is larger than 10 for the temperature and much
smaller for the concentration. This explains that, as anticipated, the temperature oscillations
are more monochromatic than the oscillations of the concentration. On the other hand, the
amplitude of the mean field mode is comparable to (though somewhat larger than) that of
the dominant oscillatory modes for the temperature, but it is 55 times larger for the concen-
tration, which means that the mean field mode dominates the spatio-temporal concentration
field. In other words, the mean field mode, which as seen below is very irregular, masks any
possible (regular) pattern in the oscillatory concentration field.

It turns out that for both the temperature and concentration, the relevant frequencies, with
a precision of five significant digits, are ω1 = 1.5082 and its (positive and negative) harmonics.
Thus, ignoring the growth rates (which as anticipated are very small in the present case), the
expansions (4.1)–(4.2) can be rewritten as

Figure 4.3. Type I SHC oscillation for Ra = 1610: a − ω diagrams for the (a) temperature and (b)
concentration fields in the application of the HODMD method to the SHC state.
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(4.7) Θ(r, ϕ, t) =
3∑

n=−3

aΘnΘn(r, ϕ) e
inω1t, C(r, ϕ, t) =

3∑
n=−3

aCnCn(r, ϕ) e
inω1t.

Since the left-hand sides in these expansions are real, the mean field modes, Θ0 and C0,
are real, and the remaining oscillatory modes appear in complex conjugate pairs, namely
Θn = Θ−n and Cn = C−n, for n = 1, 2, and 3.

Figure 4.4 shows the various modes in the expansions for the temperature and concentra-
tion appearing in the expansions (4.7), plotting the spatio-temporal mean field modes, which
are real, and the real and imaginary parts of the three oscillatory modes associated with

Figure 4.4. Type I SHC oscillation obtained for Ra= 1610: contours of (a) the temperature and (b)
concentration modes appearing in (4.7) associated with the spatio-temporal mean field (ω = 0), and the real and
imaginary parts of the modes associated with the positive frequencies ω = ω1 (mode 1), ω = 2ω1 (mode 2), and
ω = 3ω1 (mode 3).
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the positive frequencies ω1, 2ω1, and 3ω1, which are called mode 1, mode 2, and mode 3,
respectively.

Some relevant features concerning the modes for the temperature, plotted in Figure 4.4(a),
are as follows:

• The spatio-temporal mean field mode shows approximately vertical (i.e., almost aligned
with the inclination direction) blue and red stripes at horizontal positions that, more
or less, coincide with the horizontal positions of the vertical lanes of the SHC pattern,
considered in Figure 4.2(a). Thus, the spatial structure of the spatio-temporal mean
field mode for the temperature in this SHC pattern resembles that of a longitudinal-roll
pattern, rather than that of the LSF flow, plotted in Figure 3.2.

• The oscillatory mode 1 shows, approximately, transversal patterns that will give rise
to an oscillatory pattern between the real and imaginary parts of this mode. The
vertical lanes observed in the SHC solution plotted in Figure 4.2(a) cannot be easily
identified in the spatial structure of this mode. In other words, the number of objects in
each vertical line of this mode essentially doubles its counterpart in the SHC solution.
Moreover, while the objects in each lane in Figure 4.2(a) are all of the same color
(either blue or red), namely they all correspond to either low or high temperature,
the objects along each line in Figure 4.4(a) for mode 1 alternates between blue and
red. As explained below, this color change has to do with the mean field mode, which
contributes to the SHC solution, but is absent in the oscillatory mode 1.

• In the oscillatory mode 2 (which, according to Figure 4.3, exhibits a much smaller
amplitude than that of mode 1), the vertical wavenumber doubles and gives rise to
much smaller structures. In this case, the vertical lanes structure of the SHC solution
(see Figure 4.2(a)) is easily observed. In this mode, though, warm and cold spots
alternate in each vertical line, while they are of the same color in each vertical lane of
the SHC pattern. The horizontal position of the vertical lines in this mode 2 barely
varies in the real and imaginary parts of the mode.

• The oscillatory mode 3 exhibits a still much smaller amplitude (see Figure 4.3) and it
has a very small effect on the SHC pattern plotted in Figure 4.2(a).

Concerning the modes for the concentration plotted in Figure 4.4(b), they show the fol-
lowing relevant features:

• The spatio-temporal mean field mode is very irregular. Also, the contour plots of this
mode closely resemble/look like those of the LSF solution in Figure 3.2, except that
the very smooth almost-horizontal contour lines in the LSF are replaced here by wavy
contour lines.

• In the oscillatory mode 1, the fixed vertical lanes structure of the SHC solution can be
appreciated. Note that, in this mode, heavier and lighter spots alternate along each
line.

• As in mode 2 for the temperature, the vertical wavenumber is doubled in the oscillatory
mode 2 for the concentration and the number of smaller structures doubles. The
vertical lines in this mode are located at the same horizontal positions as in mode 1.

• As happened with the temperature, the amplitude of mode 3 is very small and, thus,
it has a very small effect on the SHC pattern plotted in Figure 4.2(b).
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Once the spatial modes, amplitudes, growth rates, and frequencies provided by the HODMD
method are available, it is possible to reconstruct relevant approximations of the temperature
and concentration fields using proper truncations in the expansions (4.7).

Beginning with the temperature, we consider two monochromatic reconstructions by either
(i) considering only the effect of mode 1 and its complex conjugate (i.e., those modes associated
with the frequencies ±ω1), namely

Θ(r, ϕ, t) = aΘ1 Θ1(r, ϕ) e
iω1 t + c.c.,(4.8)

where c.c. denotes hereinafter the complex conjugate, and (ii) adding the mean field to the
effect of mode 1 and its complex conjugate, namely

Θ(r, ϕ, t) = [aΘ1 Θ1(r, ϕ) e
iω1 t + c.c.] + aΘ0 Θ0(r, ϕ).(4.9)

Figure 4.5 illustrates some properties of the monochromatic reconstructions (4.8) and (4.9).
As can be seen in plot (a), the spatio-temporal pattern for the reconstruction (4.8) exhibits an

Figure 4.5. Type I SHC oscillation obtained for Ra= 1610: temperature contours along a cycle, considering
four temporally equispaced snapshots, of two monochromatic reconstructions in the SHC state, showing (a) the
dynamics associated with (4.8), and (b) the counterpart of plot (a) considering the dynamics displayed in (4.9).
(c) For the monochromatic reconstructed dynamics associated with (4.8), the temperature contours at t = 0 (left
plot) and the space-time plots (middle and right plots) showing the evolution of Θ along the two off-diameter
(middle-red and right-blue) vertical red and blue lines depicted in the left contour plot. (d) Counterpart of (c)
for the reconstruction displayed in (4.9). A video showing the continuous temporal evolution associated with
plots (a) and (b) can be found in the Supplementary Materials, M144741 01.mp4 [local/web 1206MB], to this
paper.

M144741_01.mp4
https://epubs.siam.org/doi/suppl/10.1137/21M1447416/suppl_file/ M144741_01.mp4
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almost horizontal pendular motion, in which the structures reorder and split themselves in the
transversal direction during the oscillation. Apparently, this motion is completely different
from the actual SHC pattern considered in Figure 4.2(a). However, plot (b) shows that if the
mean field mode is added to the former oscillation, then the resulting snapshots do match
qualitatively those corresponding to the SHC pattern plotted in Figure 4.2(a).

In order to understand how the superposition of the oscillatory pattern (4.8) and the steady
mode associated with the mean field, which gives the pattern (4.9), resembles qualitatively
the SHC pattern, we need to gain insight into the actual dynamics along two vertical lines for
both patterns, namely (4.8) and (4.9). In particular, by plotting the temperature space-time
diagrams for the pattern (4.8) in two parallel off-diameter lines (i.e., the two vertical red and
blue lines indicated in Figure 4.5(c), left) along the direction of inclination, we are able to see
the evolution of the temperature with time along these lines. We observe that the warm (red)
and cold (blue) spots in these vertical lines do indeed travel along the direction of inclination.
In the case of the spots over the red line, the locations of both the warmer and cooler spots
correspond to ascending and descending (along the z-direction) fluid, respectively. The spots
in the red line form waves traveling uphill (Figure 4.5(c), middle), while in the case of the
spots over the blue line, the location of both the warmer and cooler regions of fluid form a
wave traveling downhill (Figure 4.5(c), right). On the other hand, in the longitudinal roll
pattern associated to the mean field (Figure 4.4(a), top), points over the red line fit the red
part of the roll, that is, the region of warmer ascending fluid, while points over the blue line fit
the blue part of the roll, that is, the region of cooler descending fluid. Thus, when the mean
field is added to the dominant monochromatic oscillation (i.e., when the reconstruction (4.9) is
considered), then over the red line, the warmer spots are reinforced, whereas the colder spots
almost vanish (green-yellow), and over the blue line, the cooler spots are reinforced, whereas
the warmer spots almost vanish (green-yellow). This simple mechanism generates the SHC
pattern, with only warm spots traveling uphill and only cold spots traveling downhill in
alternating lanes, as can be seen in Figure 4.5(d).

Let us mention here that the approximation (4.9), which only retains the mean field and
the dominant oscillatory modes associated with ω = ±ω1, gives a fairly good approximation
of the thermal field in the SHC pattern even quantitatively. This is because, as seen in
Figure 4.3(a), the amplitudes of the neglected modes are more than one order of magnitude
smaller than those of the retained modes.

Concerning the concentration pattern, Figure 4.3(b) shows that the amplitudes of the
ω = ±2ω1-modes are not so small for the concentration, whose description requires retaining
these modes. On the other hand, for the concentration, the amplitude of the steady mean
field mode is 60 times larger than that of the dominant oscillatory modes, associated with
ω = ±ω1. Thus, the mean field mode masks the remaining oscillatory modes in the SHC
pattern for the concentration, and we shall analyze the time-dependent reconstruction of the
concentration without including the mean field. In other words, we shall consider two type of
patterns, either retaining the modes associated with ω = ±ω1 only, namely (cf. (4.8)–(4.9))

C(r, ϕ, t) = aC1 C1(r, ϕ) e
iω1 t + c.c.,(4.10)

or retaining also the two modes associated with ω = ±2ω1, namely

C(r, ϕ, t) = aC1 C1(r, ϕ) e
iω1 t + aC2 C2(r, ϕ) e

2 iω1 t + c.c.(4.11)
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The counterpart of Figure 4.5 for the patterns (4.10) and (4.11) is given in Figure 4.6. In
particular, Figure 4.6(a) considers the concentration contour plots for the monochromatic dy-
namics (4.10), constructed as the superposition of the modes associated with the frequencies
ω = ±ω1 at four time instants along a cycle of the SHC state. As can be seen, the struc-
ture of this concentration pattern shows eight vertical parallel lines that very approximately
correspond to the lines in the SHC thermal pattern. The number of objects in each vertical
line essentially doubles its counterpart in Figure 4.2(a) and also doubles the number of small
bubbles observed in Figure 4.2(b). As it happened with the temperature field, when only the
modes associated with the frequencies ω = ±ω1 are retained, then the objects within each
line in Figure 4.6(a) alternate between blue and red (namely, between low and high concen-
tration). On the other hand, if we reconstruct the concentration field as in (4.11), namely
by retaining the modes associated with the frequencies ω = ±ω1 and ω = ±2ω1, then we

Figure 4.6. Type I SHC oscillation obtained for Ra = 1610: concentration contours along a cycle of the
SHC state showing (a) the monochromatic dynamics associated with (4.10) for four equispaced snapshots along
a cycle and (b) the counterpart of plot (a) as obtained by considering the monochromatic reconstruction defined
in (4.11). (c) For the reconstructed pattern displayed in (4.10), the concentration contour at t = 0 (left) and
the space-time plots showing the evolution of C along the two off-diameter (left red and right blue) vertical lines
depicted in the contour plot. (d) Counterpart of plot (c), but considering the pattern defined in (4.11). A video
showing the continuous temporal evolution associated with plots (a) and (b) can be found in the Supplementary
Materials, M144741 02.mp4 [local/web 1589MB], to this paper.

M144741_02.mp4
https://epubs.siam.org/doi/suppl/10.1137/21M1447416/suppl_file/ M144741_02.mp4
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observe in Figure 4.5(b) the same eight vertical parallel lines appearing in Figure 4.6(a), with
the same number of objects in each line, but now in each line either red or blue bubbles are
reinforced or diminished, depending on the line.

As we did for the temperature, in order to understand how the superposition of the modes
associated with the frequencies ±ω1 and ±2ω1 gives rise, very approximately, to the oscillatory
SHC pattern, we need to gain insight into the actual dynamics along vertical lines in the
pattern. In particular, by plotting the concentration space-time plots for the monochromatic
dynamics obtained by superposition of the ±ω1 modes in two parallel off-diameter lines along
the direction of inclination (Figure 4.6(c)), we observe that, as happened with temperature,
both the light and dense spots in each vertical line travel along the direction of inclination. The
spots over the red line on the left (that is, the location of both the lighter and denser regions
of fluid) form a wave traveling uphill (Figure 4.6(c), middle), and the spots over the blue line
(that is, the location of both the lighter and denser regions of fluid) form a wave traveling
downhill (Figure 4.6(c), right). Although not shown here, the same behavior is observed in the
monochromatic reconstruction retaining the ±2ω1 modes only, but in this case the number of
red and blue spots along the vertical lines doubles those for the±ω1 monochromatic oscillation.
As a result, when the two patterns are added up, namely when the modes ±ω1 and ±2ω1 are
retained (Figure 4.6(d)), the blue spots over the red line are reinforced and form the small
uphill-traveling blue bubbles (Figure 4.6(d), middle), while the red spots over the blue line
are reinforced and form the small downhill-traveling red bubbles (Figure 4.6(d), right). It
is interesting to note that this spatio-temporal pattern for the concentration was not clearly
observed in Figure 4.2(b) because, there, it was masked by the mean field. However, it is
worth mentioning that, when we subtract the mean concentration field (which could also be
obtained by averaging over a period the numerical solution) from the full nonlinear periodic
concentration field obtained by numerical simulation we obtain a periodic pattern that very
approximately matches the reconstructed solution obtained by retaining the ±ω1 and ±2ω1

modes (Figure 4.6(d)).
It is interesting to note that the results above (in particular, the expansions (4.3) and

(4.4), which apply in the whole spatial domain) have been obtained with great precision
using data in a timespan that is only slightly larger than the oscillation period. These are
great advantages of the HODMD method comparing with the performance of more classical
methods, such as FFT or power spectral density [38]. These advantages are even more evident
in the more complex dynamics considered in the next subsection.

Concerning the spatial symmetries, the quantitative inspection of the Θn and Cn modes
appearing in (4.7) shows that these exhibit the following reflection symmetry, with an accuracy
of three significant digits:

Θn(r, ϕ+ π) = −Θn(r, ϕ), Cn(r, ϕ+ π) = −Cn(r, ϕ) if 0 ̸= n = even(4.12)

and

Θn(r, ϕ+ π) = Θn(r, ϕ), Cn(r, ϕ+ π) = Cn(r, ϕ) if n = odd.(4.13)

The satisfaction of this symmetry can also be appreciated in the contour plots depicted in
Figure 4.4.
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Let us remark here that even though n = 0 can be considered as even, the symmetry
(4.13) applies with the same accuracy to Θ0 but it does not apply to C0. This is because
this symmetry can apply only if the mode exhibits zero spatial mean value. The spatial mean
values of Θ0 and C0 are not zero, but turn out to be

Θmean
0 = 4.4 · 10−6, Cmean

0 = −0.93.(4.14)

Note that Θmean
0 is very small but Cmean

0 is not.
If we subtract Cmean

0 from the temporal mean field mode, C0, we obtain the spatio-temporal
mean field mode, which is given by

CSTMFM
0 = C0 − Cmean

0 .(4.15)

To the approximation relevant here, Θ0 and CSTMFM
0 do satisfy the symmetry (4.12), namely

Θ0(r, ϕ+ π) = −Θ0(r, ϕ), CSTMFM
0 (r, ϕ+ π) = −CSTMFM

0 (r, ϕ).(4.16)

On the other hand, multiplying Cmean
0 by aC0 , we obtain

CSTmean ≡ aC0 C
mean
0 ≃ −0.5,(4.17)

which can be considered as the spatio-temporal mean of the concentration along the attractor.
For a three-dimensional (3D) solution with the spatio-temporal symmetry described be-

fore, the mean value of the fluctuation of the temperature Θ of the temporal mean field at the
midplane must be zero. If we calculate the value ΘSTmean

0 ≡ aΘ0 Θ
mean
0 , we obtain a very small

value (≃ 6.85 ·10−8) compared with the values of the temperature (≃ 10−2) of the mean field.
This small value can be attributed to the decimal truncation of the formatted data used in the
aplication of the HODMD method. The origin of the mean value of the concentration of the
mean field mode is different. As we have mentioned before, the concentration field in the 3D
solution may have a mean value ⟨Σ⟩ that is fixed from the intial condition of the concentration
field in the numerical time evolution. Thus, the mean value of the temporal mean field mode
at the midplane may have a value significantly different from zero. For a 3D solution with the
spatio-temporal symmetry described before, the value of CSTmean should be equal to ⟨Σ⟩.

Using (4.15)–(4.17), the expansions (4.7) can be rewritten as

Θ(r, ϕ, t) = aΘ0 Θ0(r, ϕ) +

[
3∑

n=1

aΘnΘn(r, ϕ) e
inω1t + c.c.

]
,(4.18)

C(r, ϕ, t) = CSTmean + aC0 C
STMFM
0 (r, ϕ) +

[
3∑

n=1

aCnCn(r, ϕ) e
inω1t + c.c.

]
.(4.19)

Recalling that the period of the oscillation is T = 2π/ω1 (which means that nω1T/2 =
nπ) and noting that einπ = 1 and −1 for n = even and odd, respectively, (4.12)–(4.13),
(4.16), and (4.18)–(4.19) imply that, to the approximation relevant here, the temperature and
concentration fields exhibit, as expected, the spatio-temporal reflection symmetry

Θ(r, ϕ+ π, t) = −Θ(r, ϕ, t+ T/2),

C(r, ϕ+ π, t)− CSTmean = −
[
C(r, ϕ, t+ T/2)− CSTmean

]
,(4.20)
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which can also be written as

x → −x, y → −y, t → t+ T/2,

Θ → −Θ, C − CSTmean → −
(
C − CSTmean

)
.(4.21)

It is to be noted that, under the symmetry defined in (4.20) or (4.21), the mid diameter
along the direction of inclination is just in between two counterpropagating lanes of the SHC,
which means that the number of lanes in this pattern is even.

Concerning the other types of SHCs, a detailed analysis is omitted here for the sake
of brevity. Instead, we just indicate the main differences with type I SHCs that affect the
symmetries of the modes.

As in type I SHCs, the HODMD method (using appropriate tunable parameters) provides
expansions of the form (4.7), namely

(4.22) Θ(r, ϕ, t) =

NΘ∑
n=−NΘ

aΘnΘn(r, ϕ) e
inω1t, C(r, ϕ, t) =

NC∑
n=−NC

aCnCn(r, ϕ) e
inω1t,

where the number of retained modes for the temperature and concentration (which do not
generally coincide), 2NΘ+1 and 2NC +1, respectively, depend on the considered pattern. As
in type I patterns, since the left-hand sides in these expansions are real, the mean field modes,
Θ0 and C0, are real, and the remaining oscillatory modes appear in complex conjugate pairs,
namely Θn = Θ−n and Cn = C−n, for all n, where as above the overbar denotes the complex
conjugate.

• (Type III SHC) In connection with the spatial symmetries of the modes appearing in
(4.22), the only difference with those of type I SHC is that instead of (4.13), the odd
modes satisfy the same symmetry as the even modes, i.e.,

Θn(r, ϕ+ π) = −Θn(r, ϕ), Cn(r, ϕ+ π) = −Cn(r, ϕ) for all n.(4.23)

Thus, the temperature and concentration fields at the midplane satisfy the R2 sym-
metry at every time instant. As in type I SHC solutions, in type III SHC the mid
diameter along the direction of inclination is just in between two counterpropagating
lanes of the SHC, which means that the number of lanes in this pattern is also even.

• (Type II SHC) The modes appearing in (4.22) exhibit a different symmetry than those
appearing (4.12)–(4.13), and (4.16), namely

Θn(r,−ϕ) = Θn(r, ϕ), Cn(r,−ϕ) = Cn(r, ϕ) if n = even(4.24)

and

Θn(r,−ϕ) = −Θn(r, ϕ), Cn(r,−ϕ) = −Cn(r, ϕ) if n = odd.(4.25)

Note that, in contrast to what happened with type I SHCs, the symmetry (4.24) also
holds for n = 0, which is considered as even, without the need of subtracting the
spatial mean value of this mode. This is because the symmetry (4.24) does not require
that these modes exhibit zero spatial mean value.
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Consistently with (4.22), the spatio-temporal symmetry of type I SHCs (4.20) is re-
placed by

Θ(r, ϕ, t+ T/2) = Θ(r,−ϕ, t), C(r, ϕ, t+ T/2) = C(r,−ϕ, t).(4.26)

Or, still, noting that the transformation ϕ → −ϕ (maintaining r) is equivalent to
(x, y) → (x,−y), the spatio-temporal symmetry (4.26) can also be written as

x → x, y → −y, t → t+ T/2, Θ → Θ, C → C.(4.27)

Note that invariance under (4.27) now means that the mid diameter along the inclina-
tion is inside a lane of the type II SHC pattern, which in turn means that the number
of lanes is odd in these patterns.

• (Type IV SHC) For these SHCs, the modes appearing in (4.22) satisfy the symmetry
(4.24) but, instead of (4.25), the odd modes satisfy the same symmetry as the even
modes, i.e.,

Θn(r,−ϕ) = Θn(r, ϕ), Cn(r,−ϕ) = Cn(r, ϕ) for all n.(4.28)

Thus, the temperature and concentration fields at the midplane satisfy the R1 sym-
metry at every time instant. As in type II SHC solutions, in type IV SHC the mid
diameter along the direction of inclination is inside a lane of the type IV SHC pattern,
which in turn means that the number of lanes is also odd in these patterns.

4.2. Modulated SHC patterns. Now, we consider the dynamics corresponding to several
modulated SHC oscillations, with amplitudes that are no longer constant (in contrast to the
previous symmetric SHCs) but modulated in time. As anticipated in the introduction, these
modulated patterns seem to originate in a Neimark–Sacker bifurcation [16] of the branch of
periodic SHC solutions, and further bifurcations. The Neimark–Sacker bifurcation is pro-
duced by a pair of complex conjugate, nearly unstable Floquet multipliers [16] of the basic
periodic SHC orbit. Thus, in principle, near the bifurcation point, an invariant two-torus is
expected to exist in phase space. One of the two fundamental frequencies of the associated
quasiperiodic orbit is close to the frequency of the basic periodic solution, and the other is
close to that of the pair of complex nearly unstable Floquet eigenfunctions. Generically, these
two fundamental frequencies are incommensurable, though they can be commensurable due
to frequency locking. In fact, beyond the bifurcation point, infinitely many, quite narrow,
cusped Arnold tongues [39] intersect in which frequency locking takes place. In each tongue,
a pair of periodic orbits exists, one stable and the other unstable, which disappear at the bor-
der of the tongue through a saddle-node bifurcation. These periodic orbits are produced by
weak resonances, and their period is generically very large. The stable periodic orbits in each
tongue typically exhibit a small basin of attraction and, moreover, the transients converging
to the orbits may be very slow and may somewhat wander, in a near-heteroclinic way, visiting
vicinities of nearby unstable periodic orbits associated with other Arnold tongues.

With the above in mind, quasiperiodic attractors and frequency locked periodic attrac-
tors are identified by the HODMD method as follows. These attractors exhibit zero (in fact,
very small but nonzero, due to numerical errors) growth/damping rates. For quasiperiodic
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attractors, the relevant frequencies are linear combinations, with integer coefficients, of two
or more incommensurable fundamental frequencies. When the “fundamental frequencies” be-
come commensurable (frequency locking), the attractor is periodic and the relevant frequen-
cies are all multiples of a fundamental frequency. It must be noted, however, that elucidating
quasiperiodicity is not possible in finite precision computations, in which two frequencies are
necessarily commensurable. This issue will be addressed in section 4.2.1, where a particular
quasiperiodic attractor will be considered for which the associated fundamental frequencies
are nearly incommensurable. This type of attractor can be guessed to be quasiperiodic or, at
least, nearly quasiperiodic. The case of a frequency locked periodic orbit will be considered
in section 4.2.2.

As anticipated in the introduction, for most values of the Rayleigh number, modulated su-
perhighways remain irregular (namely, neither periodic nor quasiperiodic) even for extremely
large time, at least, of the order of several thousand time units. These irregular orbits seem to
exhibit multiple nearly heteroclinic connections, visiting vicinities of unstable periodic solu-
tions originated in a Neimark Sacker bifurcation. The expansions (4.22) of these irregular or-
bits exhibit (somewhat small but) nonzero positive and negative growth rates. Positive growth
rates indicate departure from an unstable periodic orbit, while negative growth rates account
for the approach to another unstable periodic orbit. The irregular orbits could correspond
to extremely long transients that would finally converge to attractors. However, in practice,
numerical (or experimental) tests can only be performed in reasonably large timespans, mean-
ing that ascertaining convergence to attractors is not possible in practice. Therefore, these
irregular orbits will not be further pursued in this section, where the analysis will focus on
periodic and quasiperiodic orbits.

4.2.1. A quasiperiodic orbit showing two incommensurable fundamental frequencies
at Ra =1645. After a long integration of the numerical solver in order to eliminate transient
behavior at Ra = 1645, we set t = 0 and begin collecting snapshots to apply the HODMD
method. The time evolution of the temperature and concentration at a representative point
inside the spatial domain is given in Figure 4.7. Comparison with Figure 4.1 shows that while

Figure 4.7. Temporal evolution of the (a) temperature and (b) concentration at the mid-height point
r = R/2, ϕ = 45◦, in nondimensional units, for the quasiperiodic, modulated SHC state obtained at Ra = 1645.
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the symmetric SHC pattern can be seen as an oscillation with constant amplitude modulation
around its mean field mode, the oscillation in the present pattern exhibits a slowly varying
amplitude around its mean field mode.

In order to analyze the dynamics in the present case, the HODMD method is applied to
both the temperature and concentration using 801 snapshots in the time interval 0 ≤ t ≤ 160,
which as seen in Figure 4.1 is somewhat larger than the modulating period (namely, the
larger period that is present). The HODMD method is applied using the following values of
the tunable parameters:

ε1 = 10−5, ε2 = 10−3, d = 200.(4.29)

Comparison of (4.29) with (4.6) shows that the dimension reduction and mode truncation
thresholds coincide with their counterparts in the simpler symmetric SHC pattern considered
in the last subsection, which illustrates the robustness of the method. The index d, instead, is
much larger now, which is consistent with the higher complexity of the present pattern. The
relative RMS error, as defined in (2.24), is 2.85 ∼ 10−3 retaining 45 modes for the thermal field
and ∼ 2.7 · 10−3 retaining 21 modes for the concentration field. Note that the selected value
of the index d is fairly large, namely d = 200. If, instead, the value d = 1 were taken, which
corresponds to applying the standard DMD method, then the relative RMS error would have
been ∼ 3.5 · 10−3 retaining 74 modes (a much larger number of modes than using d = 200)
for the thermal field, while for the concentration field, both the relative RMS error and the
number of retained modes coincide with their counterparts for d = 200.

For both the temperature and concentration, the damping rates identified by the method
are all negative and such that |δn| is very small, namely smaller than ∼ 10−4. This indicates
that, to the approximation relevant here, the given data are already in the attractor.

The a− ω diagrams for both the temperature and concentration are given in Figure 4.8.
As can be seen, these diagrams exhibit an interesting pattern, built by seven biangular sub-
patterns. For both the temperature and concentration, the upper vertices (plotted in black)
of the subpatterns turn out to be the zero frequency and three pairs of positive/negative
harmonics of the first fundamental frequency

Figure 4.8. a − ω diagrams for the temperature (a) and concentration (b) fields in the application of
the HODMD method to the considered quasiperiodic, modulated SHC oscillation at Ra = 1645. Those points
corresponding to the upper vertices of the seven biangular subpatterns are plotted in black, and the remaining
points, in blue.
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ω̃1 = 1.3767,(4.30)

which is calculated with five exact significant figures. In addition, in each subpattern, the var-
ious subsequent nearby frequencies differ from each other by a second fundamental frequency

ω̃2 = 0.0818.(4.31)

In other words, the various frequencies identified by the method can be written, with five
exact digits, as

ω = n1 ω̃1 + n2 ω̃2,(4.32)

where n1 and n2 are positive or negative integers. Using this, the expansions (4.1)–(4.2) can
be written as

Θ(r, ϕ, t) =
∑
n1,n2

aΘn1n2
Θn1n2(r, ϕ) e

i (n1 ω̃1+n2 ω̃2) t,(4.33)

C(r, ϕ, t) =
∑
n1,n2

aCn1n2
Cn1n2(r, ϕ) e

i (n1 ω̃1+n2 ω̃2) t,(4.34)

where the relevant values of n1 and n2, identified by the method, are given in Table 4.1. As
seen in this table, consistently with Figure 4.8(a), the method identifies 45 frequencies for the
temperature, namely, the frequency ω = 0 (associated with n1 = n2 = 0) and 22 pairs of posi-
tive/negative frequencies. For the concentration, consistently with Figure 4.8(b), the number
of identified frequencies is 21, including the zero frequency and 10 pairs of positive/negative
frequencies.

The fundamental frequencies ω̃1 and ω̃2 are nearly incommensurable, as can be seen in
the analysis in the appendix. Note that, with finite precision computations, exact incommen-
surability is not possible, namely two double precision numbers are always commensurable.
However, two frequencies, ω̃1 > 0 and ω̃2 > 0, such that ω̃1 > ω̃2, computed with finite
precision, are nearly incommensurable if they are such that∣∣∣∣ ω̃2

ω̃1
− p

q

∣∣∣∣ < ε,(4.35)

where p and q are mutually prime, natural numbers, such that q is large and ε is conveniently
small. Note that if ω̃1 and ω̃2 are approximated such that ω̃2/ω̃1 = p/q (cf. (4.35)), then
the resulting approximated frequencies are commensurable and the dynamics is periodic, with
a fundamental frequency ω̃ ≃ ω̃2/p ≃ ω̃1/q, which is very small, namely its period (2π/ω̃)
is very large. Thus, the approximating periodic orbit is nearly quasiperiodic and hardly
distinguishable in practice from a truly quasiperiodic solution. For the present case, as seen
in the appendix (Table A.2), (4.35) holds with p = 29, q = 488, and ε = 10−5 (comparable
to the precision in the computation of the frequencies ω̃1 and ω̃2). Thus, the frequency of
the abovementioned approximating periodic solution is ω̃ ≃ ω̃1/q = ω̃2/p = 2.8 · 10−3 and
its period is very large, namely equal to ≃ 2π/ω̃ = 2.2 · 103 time units. In other words,
the considered orbit can be considered as quasiperiodic, or at least nearly quasiperiodic, as
anticipated.
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Table 4.1
The integers n1 and n2 appearing in the decomposition (4.32) and the associated mode amplitudes for the

temperature and concentration.

ω n1 n2 aΘ aC

0 0 0 0.0197 0.532
±0.0818 0 ±1 9.41 · 10−4 1.64 · 10−3

±0.1636 0 ±2 1.68 · 10−4 –
±0.2454 0 ±3 5.4 · 10−5 –
±0.327 0 ±4 2.48 · 10−5 –
±1.05 ±1 ∓4 2.5 · 10−5 –
±1.131 ±1 ∓3 7.33 · 10−5 –
±1.213 ±1 ∓2 2.39 · 10−4 –
±1.295 ±1 ∓1 1.14 · 10−3 1.74 · 10−3

±1.377 ±1 0 7.02 · 10−3 9.83 · 10−3

±1.459 ±1 ±1 1.69 · 10−3 2.51 · 10−3

±1.54 ±1 ±2 4.98 · 10−4 7.18 · 10−4

±1.622 ±1 ±3 1.37 · 10−4 –
±1.704 ±1 ±4 4.87 · 10−5 –
±2.59 ±2 ∓2 3.09 · 10−5 –
±2.672 ±2 ∓1 9.92 · 10−5 8.37 · 10−4

±2.753 ±2 0 3.05 · 10−4 2.82 · 10−4

±2.835 ±2 ±1 1.46 · 10−4 1.69 · 10−3

±2.917 ±2 ±2 5.99 · 10−5 6.92 · 10−4

±2.999 ±2 ±3 2.32 · 10−5 –
±4.048 ±3 ∓1 2.08 · 10−5 –
±4.13 ±3 0 3.57 · 10−5 5.49 · 10−4

±4.212 ±3 ±1 2.57 · 10−5 –

Let us now analyze the symmetries of the modes appearing in the expansion (4.33)–(4.34),
which are now seen to be consistent with the symmetries of the modes of the type I symmetric
SHCs considered in section 4.1. This suggests that the present quasiperiodic solution bifurcates
(through a Neimark–Sacker instability, as anticipated) from the type I symmetric SHC branch.

The counterpart of the symmetries (4.12) and (4.13) are now given by

Θn1n2(r, ϕ+ π) = −Θn1n2(r, ϕ), Cn1n2(r, ϕ+ π) = −Cn1n2(r, ϕ)

if n1 = even with (n1, n2) ̸= (0, 0),(4.36)

and

Θn1n2(r, ϕ+ π) = Θn1n2(r, ϕ), Cn1n2(r, ϕ+ π) = Cn1n2(r, ϕ) if n1 = odd,(4.37)

respectively (see Figure 4.9). Note that, as indicated, the symmetry (4.36) is satisfied for
n1 = 0 and all values of n2. This means that the modes associated to frequency ω2 only
(n1 = 0) are R2 symmetric, as can be appreciated in Figure 4.9(a). As a result, the symmetry
of the remaining modes (n1 ̸= 0) is determined only by the value of n1 and is the same as in
type I SHC solutions.

However, as in symmetric type I SHCs, this symmetry (4.36) does not apply to C00, while
it applies to Θ00 only approximately. This is because, by its own nature, this symmetry
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Figure 4.9. Quasiperiodic orbit obtained for Ra = 1645: contours of the real part of the temperature modes
associated to the values of the indexes n1 and n2 in expansion (4.33) indicated in the figure. The depicted modes
correspond to (a) n1 = 0, (b) n1 = 1, and (c) n1 = 2, and four different values of n2.

requires that the mode exhibits zero spatial mean value. The spatial mean values of Θ00 and
C00 are not zero, but they turn out to be

Θmean
00 = 3.2 · 10−4, Cmean

00 = −0.94.(4.38)

Thus, Θmean
00 is very small, but Cmean

00 is not, which explains that (4.36) approximately applies
to Θ00 but not to C00. If we multiple Θmean

00 by aΘ00 we obtain ΘSTmean ≃ 6.29 · 10−6, which
is a very small value compared with the actual values of Θ in the mid-height plane. As we
discuss below, this is a consequence of the fact that the two-torus is R2-symmetric.

As in type I symmetric SHCs, we define the spatio-temporal mean field mode, CSTMFM
00 ,

by substracting Cmean
00 from the temporal mean field mode, C00. This gives the counterpart

of (4.15), namely

CSTMFM
00 = C00 − Cmean

00 .(4.39)

To the approximation relevant here, these modes do satisfy the symmetry (4.36), namely

Θ00(r, ϕ+ π) = −Θ00(r, ϕ), CSTMFM
00 (r, ϕ+ π) = −CSTMFM

00 (r, ϕ).(4.40)

To proceed, we multiply Cmean
00 by aC00. This gives the spatio-temporal mean of the con-

centration, CSTmean, along the quasiperiodic attractor, namely
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CSTmean ≡ ac00C
mean
0 ≃ −0.5.(4.41)

Using (4.39)–(4.41), the expansions (4.33) and (4.34) can be rewritten as

Θ(r, ϕ, t) = aΘ00Θ00(r, ϕ) +
∑

(n1,n2 )̸=(0,0)

aΘn1n2
Θn1n2(r, ϕ) e

i (n1 ω̃1+n2 ω̃2) t(4.42)

and

C(r, ϕ) = CSTmean + aC00C
STMFM
00 (r, ϕ)+∑

(n1,n2 )̸=(0,0)

aCn1n2
Cn1n2(r, ϕ) e

i (n1 ω̃1+n2 ω̃2) t,(4.43)

respectively.
In contrast to the analysis of symmetric type I SHCs presented in section 4.1, identifying

spatio-temporal symmetries in the present quasiperiodic attractor is a subtle matter. Instead,
a reflection symmetry will be identified in the associated two-torus filled by the orbit. A
semianalytic, parametric approximation of this torus is readily obtained from (4.42)–(4.43),
to be

Θ(r, ϕ, ϕ1, ϕ2) = aΘ00Θ00(r, ϕ)

+
∑

(n1,n2 )̸=(0,0)

aΘn1n2
Θn1n2(r, ϕ) e

i (n1 ϕ1+n2 ϕ2) for 0 ≤ ϕ1, ϕ2 < π,(4.44)

C(r, ϕ, ϕ1, ϕ2) = CSTmean + aC00C
STMFM
00 (r, ϕ)

+
∑

(n1,n2 )̸=(0,0)

aCn1n2
Cn1n2(r, ϕ) e

i (n1 ϕ1+n2 ϕ2) for 0 ≤ ϕ1, ϕ2 < π,(4.45)

where ϕ1 and ϕ2 are two parameters along the two-torus in phase space.
Now, noting that ein1π = 1 and −1 for n1 = even and odd, respectively, (4.36)–(4.37) and

(4.39)–(4.41) imply that, to the approximation relevant here, the parametric representation
of the two-torus (4.44)–(4.45) exhibits the following spatio-temporal reflection symmetry:

Θ(r, ϕ, ϕ1 + π, ϕ2) = −Θ(r, ϕ+ π, ϕ1, ϕ2),(4.46)

C(r, ϕ, ϕ1 + π, ϕ2)− CSTmean = −
[
C(r, ϕ+ π, ϕ1, ϕ2)− CSTmean

]
.(4.47)

Since the transformation ϕ → ϕ + π (maintaining r) is equivalent to (x, y) → −(x, y), the
spatio-temporal symmetry (4.46)–(4.47) can also be written as

x → −x, y → −y, ϕ1 → ϕ1 + π,

Θ → −Θ, C − CSTmean → −
(
C − CSTmean

)
.(4.48)

In other words, to the approximation relevant here, the two-torus is reflection symmetric
in phase space around the origin (x, y) = (0, 0). This reflection symmetry is illustrated in
Figure 4.10, where the time evolution of the value of concentration minus its spatio-temporal



SLIGHTLY INCLINED BINARY FLUID CONVECTION 31

Figure 4.10. Phase portrait of the value of concentration minus its spatio-temporal mean CSTmean in two
symmetric points, (x, y) and (−x,−y) for (a) the symmetric SHC obtained for Ra = 1610 and (b) the two-torus
obtained for Ra = 1645.

mean CSTmean in two symmetric points, (x, y) and (−x,−y), is represented, both for the
symmetric SHC obtained for Ra = 1610, in plot (a), and for the present two-torus obtained
for Ra = 1645, in plot (b). As can be seen, both plots exhibit the symmetry (4.48), as
anticipated. Also, while for the periodic attractor at Ra = 1610 the orbit is contained in a
closed curve, for the quasiperiodic attractor at Ra = 1645, the orbit fills a 2D region in the
considered plane.

4.2.2. A frequency locked periodic orbit at Ra =1680. For this value of Ra, the dy-
namics is associated with a periodic attractor that corresponds to a frequency locked orbit.

In order to ensure that the considered data are already in the attractor, we first integrate
the numerical solver in a very large time interval to eliminate transient behavior. After this,
we set t = 0 and begin collecting snapshots to apply the HODMD method.

The temporal evolution of the temperature and concentration at a representative point
inside the spatial domain is considered in Figure 4.11. As can be seen in this figure, as time
proceeds, the pattern alternates between modulated SHC structures (near, e.g., t = 101) and
nearly stationary longitudinal rolls (near, e.g., t = 150). Notice that these latter rolls are not
aligned along inclination and, also, that the number of lanes is odd. These are in contrast
to the previously analyzed symmetric SHC obtained for Ra = 1610 and in contrast to the
quasi-periodic orbit obtained for Ra = 1645.

In order to analyze the dynamics in the present case, the HODMD method is applied to
both the temperature and concentration using 701 snapshots in the time interval 0 ≤ t ≤ 140,
with the following values of the remaining tunable parameters:

ε1 = 5 · 10−5, ε2 = 5 · 10−4, d = 200.(4.49)

Comparison with their counterparts in (4.29) for the quasiperiodic attractor shows that these
parameters are similar in the present case to obtain comparable accuracy of the reconstruc-
tions. In fact, the relative RMS error, as defined in (2.24), is ∼ 1.32 ·10−3 retaining 149 modes
for the thermal field and ∼ 3.2 · 10−3 retaining 99 modes for the concentration field. As for
the quasiperiodic attractor, the selected value of the index d is fairly large, namely d = 200.
If, instead, the value d = 1 were taken, which corresponds to applying the standard DMD



32 A. ALONSO, I. MERCADER, O. BATISTE, AND J. M. VEGA

Figure 4.11. Time series of (a) temperature and (b) concentration at a representative interior point in the
spatial domain for the periodic, modulated SHC state obtained at Ra = 1680. Contour plots of temperature at
midplane for the time instants (c) t = 101 and (d) t = 150, indicated in the temperature time series with a
circle.

Figure 4.12. a− ω diagrams for the temperature (a) and the concentration (b) fields in the application of
the HODMD method to the periodic, modulated SHC state. Those points corresponding to the upper vertices of
the seven biangular subpatterns are plotted in black, and the remaining points, in blue.

method, then the relative RMS error would have been much larger, namely ∼ 0.045 for the
thermal field and ∼ 0.01 for the concentration field.

The damping rates identified by the method are all negative and such that |δn| is very
small, namely |δn| is smaller than ∼ 10−6 for both the temperature and concentration.
This indicates that, to the approximation relevant here, the given data are already in the
attractor.

The a−ω diagrams for both the temperature and concentration are given in Figure 4.12.
As can be seen, these diagrams are qualitatively similar to their counterparts for the quasi-
periodic dynamics analyzed in section 4.2.1 (cf. Figure 4.8). In other words, for both the
concentration and temperature, the relevant points in the a − ω diagrams build seven bi-
angular subpatterns, whose upper vertices are the zero frequency (associated with the mean
field) and three positive and negative harmonics of the primary fundamental frequency,

ω̃1 = 1.4287.(4.50)
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Figure 4.13. Frequency locked periodic orbit obtained for Ra = 1680: contours of the real part of the
temperature modes associated to frequencies ω = 0, ω = ω̃2 = ω̃1/22, and ω = ω̃1.

In all biangular subpatterns, all nearby frequencies differ among each other by the secondary
fundamental frequency

ω̃2 = 0.064939.(4.51)

In principle, one could think that the pattern is quasiperiodic, as it happened in section 4.2.1.
However, in the present case, ω̃1 and ω̃2 are commensurable (which is consistent with frequency
locking), namely ω̃1 = 22 ω̃2, with an accuracy of five significant digits. Thus, in the present
case, to the approximation relevant here, the pattern is periodic, with a period T = 2π/ω̃2 =
96.755 time units.

Quantitative inspection of the modes retained in the present case shows that, in contrast
to what happened in the symmetric and modulated dynamics analyzed in sections 4.1 and
4.2.1, none of the modes identified by the HODMD method shows any identifiable symmetry,
as can be appreciated in Figure 4.13, where the real part of the temperature modes associated
to frequencies ω = 0, ω = ω̃2 = ω̃1/22, and ω = ω̃1 are displayed. Note that the possible
symmetries would result from the symmetries of the problem. Concentrating on the symme-
tries of the temperature and concentration at the midplane of the cylinder, these symmetries
of the modes consist on invariance under any of the actions

R±
1 : y → −y, Θ → ±Θ, C → ±C,(4.52)

R±
2 : x → −x, y → −y, Θ → ∓Θ, C → ∓C.(4.53)

Since the modes are not invariant under any of these actions, the dynamics of the present
pattern does not exhibit any of the possible spatio-temporal symmetries.

5. Concluding remarks. We have concentrated on the relevant patterns appearing in
double-diffusive convection in a fairly flat, slightly inclined circular cylinder. These patterns
were analyzed using a recent data processing tool called higher order dynamic mode decom-
position (HODMD), which was applied to numerically obtained data. Specifically, we have
considered symmetric periodic and modulated superhighway (SHC) patterns. The advantage
of using HODMD is that it allows us to discard transient dynamics and facilitates identifying
the temporal nature of the solutions, avoiding the use of FFTs and Poincaré sections, which
require extremely long and precise time integrations.

For symmetric SHC patterns, considered in section 4.1, the HODMD method permitted
uncovering the global spatio-temporal structure of these patterns as a superposition of a mean
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field and a periodic oscillation. The qualitative spatio-temporal structure of the thermal SHC
patterns was proved to be well described using just the mean field mode and the dominant os-
cillatory mode. The mean field for the temperature turned out to be longitudinal rolls aligned
with inclination, each roll coincident with the lanes in the SHC pattern. The first oscillatory
mode were transverse oscillations in which elongated convective cells split and merge in a
pendular motion. The amplitudes of these two first modes are of the same order, and much
larger than those associated to the following oscillatory harmonics. In the reconstruction of
the solution with the modes provided by HODMD, the hotter/colder lanes in the longitudinal
rolls are either reinforced or canceled out when the lanes with alternating hotter/colder spots
of the first oscillatory mode are superposed to the mean flow, resulting in the peculiar SHC
spatio-temporal structure. In contrast, the spatio-temporal structure of the concentration
SHC patterns also required us to consider the second and subsequent oscillatory harmon-
ics. The spatial complexity of the concentration field arises, on one hand, from the smaller
spatial wavelenghts of these oscillatory harmonics and, on the other, from the fact that the
concentration mean field is very spatially irregular.

With the reconstruction of the solution with the modes provided by HODMD we are able
to assert that the periodic SHC states originate from a Hopf instability of the basic steady
pattern of longitudinal rolls. We have focused on type I symmetric periodic SHC patterns
and have analyzed the symmetries of the modes of the HODMD decomposition. We have
also discussed the spatial symmetries that the oscillatory modes of the rest of symmetric
periodic SHC solutions would exhibit when the HODMD method is applied using information
at midplane. HODMD allows us either to identify or discard the spatio-temporal symmetries
that the 3D patterns would exhibit. Using solutions at midplane is particulary useful to
extract information about type I and type III symmetric solutions, which involve the R3D

2

symmetry. Otherwise, two equidistant planes should be used and the modes and coefficients
of the HDOMD expansions should be related in both planes.

Concerning the modulated SHC patterns analyzed in section 4.2, these exhibit a spatial
modulation that gives a slowly varying amplitude (in contrast to symmetric SHCs, which ex-
hibit a constant amplitude). Two representative modulated SHCs were considered. Quasiperi-
odic modulated SHCs were addressed in section 4.2.1, where quasiperiodicity was guessed using
a method described in the appendix. Again, the HODMD method facilitated the identification
of the symmetries that are present. In this case, the symmetry manifests itself in a reflection
symmetry exhibited by the two-torus filled by the orbit. A semianalytic description of the
torus was derived as a part of the analysis. In addition, a frequency locked periodic orbit was
considered in section 4.2.2. In this case, the HODMD method permitted to ensure that the
pattern is periodic, namely all frequencies were seen (with great precision) to be multiples of
a unique fundamental frequency. It must be noted that, in this case, strict periodicity cannot
be guessed from a look at the obtained time series, which would resemble their counterparts
obtained in a quasiperiodic case.

We hope that the present paper illustrates the ability of the HODMD method to uncover
the structure of complex pattern forming phenomena.

Appendix A. Nearly incommensurable frequencies. This is a subtle matter for finite
precision frequencies, which are always commensurable. However, two frequencies computed
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with finite precision, ω1 and ω2, are guessed to be incommensurable if they are nearly incom-
mensurable, which means that they are such that∣∣∣∣ω2

ω1
− p

q

∣∣∣∣ < ε,(A.1)

where the fraction p/q is irreductible, namely the natural numbers and q > p > 0 are mutually
prime, q is large (say, larger than 100), and ε > 0 is conveniently small.

Approximations of ω2/ω1 by irreductible fractions are obtained using an iterative method
based on Haros–Farey fractions [40], which is based on the property that if r0 = p0/q0 and
r1 = p1/q1 are two irreductible fractions such that 0 < r0 < r1 < 1, then the mediant of these
two fractions, defined as

r̂ =
p0 + p1
q0 + q1

,(A.2)

is also irreductible and such that r0 < r̂ < r1.
Without loss of generality, we assume that the frequencies ω1 and ω2 are such that 0 <

r = ω2/ω1 < 1. Note that for r = 0 and 1, ω1 and ω2 are commensurable, and that if r > 1,
then interchanging ω1 and ω2, the new value of r is smaller than 1.

Rational approximations of r by irreductible fractions are computed iteratively as follows.
Let plow0 , qlow0 , pup0 , and qup0 be such that rlow0 = plow0 /qlow0 and rup0 = pup0 /qup0 are both irre-
ductible and verify rlow0 < r < rup0 . In the absence of a better initial guess, a selection of these
irreductible initial fractions is

plow0 = 0, qlow0 = pup0 = qup0 = 1.(A.3)

For n ≥ 1, we consider the mediant of the irreductible fractions rlown−1 = plown−1/q
low
n−1 and

rupn−1 = pupn−1/q
up
n−1, denoted as

r̂n =
p̂n
q̂n

.(A.4)

As anticipated, the mediant is also irreductible and such that

rlown−1 < r̂n < rupn−1.(A.5)

Now, we consider two alternatives, depending on the relative position of r̂n and r:
• If r̂n ≤ r, then we define the next pair of irreductible fractions for the next iteration
as

plown = p̂n, qlown = q̂n, pupn = pupn−1, and qupn = qupn−1.(A.6)

• If r̂n > r, then we set

plown = plown−1, qlown = qlown−1, pupn = p̂n, and qupn = q̂n.(A.7)
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Table A.1
Irreductible fractions p/q approximating the ratio ω2/ω1 and the associated errors for the incommensurable

frequencies ω1 = π and ω2 =
√
2.

Iterations p q |ω2/ω1 − p/q|
1-3 1 2 0.05
4 3 7 0.022
5 4 9 7.7 · 10−3

6 5 11 4.4 · 10−3

7-14 9 20 1.6 · 10−4

15 77 171 1.3 · 10−4

16 86 191 10−4

17 95 211 7.9 · 10−5

18 104 231 5.8 · 10−5

19 113 251 4.1 · 10−5

20 122 271 2.6 · 10−5

21 131 291 1.4 · 10−5

22-23 140 311 2.6 · 10−6

24 289 642 2.4 · 10−6

25 429 953 7.6 · 10−7

26-29 569 1264 7 · 10−8

30 2705 6009 6.2 · 10−8

31 3274 7273 6.2 · 10−8

32 3843 8537 2.3 · 10−8

33 4412 9801 1.1 · 10−8

34-36 4981 11065 1.7 · 10−9

37 15512 34459 8.9 · 10−10

38 20493 45524 2.5 · 10−10

39 25474 56589 1.3 · 10−10

40 45967 102113 4 · 10−11

41 71441 158702 2.1 · 10−11

42-43 117408 260815 2.8 · 10−12

44 306257 680332 2.8 · 10−12

45 423665 941147 1.2 · 10−12

46 541073 1201962 3.4 · 10−13

47 658481 1462777 2.2 · 10−3

48-49 1199554 2664739 3.2 · 10−14

50 3057589 6792255 2.3 · 10−14

51 4257143 9456994 7.6 · 10−15

52-54 5456697 12121733 1.1 · 10−15

55 20627234 45822193 6.7 · 10−16

We define the irreductible fractions

rlown =
plown

qlown

and rupn =
pupn
qupn

.(A.8)

Note that the length of the interval [rlown , rlown ] strictly decreases as n increases, and this
interval contains r in its interior. This means that the end-points of the interval both converge
to r. At this iteration, we select as approximation of r that end-point of the interval that is
closest to r. This end-point will be denoted as r∗n and the iteration is terminated when

|r∗n − r| < ε(A.9)
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Table A.2
Counterpart of Table A.1 for ω1 = 1.3767 and ω2 = 0.0818.

Iterations p q |ω2/ω1 − p/q|
1-7 0 1 0.059
8 1 9 0.052
9 1 10 0.04
10 1 11 0.031
11 1 12 0.024
12 1 13 0.018
13 1 14 0.012
14 1 15 7.2 · 10−3

15 1 16 3.1 · 10−3

16-17 1 17 5.9 · 10−4

18 3 50 5.8 · 10−4

19 4 67 2.8 · 10−4

20 5 84 1.1 · 10−4

21-24 6 101 1.2 · 10−5

25 29 488 8.8 · 10−6

26 35 589 5.3 · 10−6

27 41 690 2.8 · 10−6

28 47 791 10−6

29 53 892 4.1 · 10−7

30 100 1683 2.6 · 10−7

31-33 153 2575 2.8 · 10−8

34 512 8617 1.7 · 10−8

35 665 11192 6.4 · 10−9

36 818 13767 6.9 · 10−18

for some conveniently small threshold ε. It must be noted that it may happen that one of the
end-points of the interval, namely either rlown or rupn , remains constant along various iterations.
This means that the end-point giving the best approximation of r, namely r∗n, may also remain
constant along some iterations.

The method described above is easily implemented in a MATLAB function whose opera-
tion is very fast. Let us now illustrate the method considering two cases.

For ω1 = π and ω2 =
√
2, the 55 iterations needed to obtain the approximation (A.1), with

zero-machine accuracy, are given in Table A.1. Note that, as anticipated, the approximating
irreductible fraction, p/q, remains constant along some of the iterations. As can be seen,
setting ε = 10−5, the method gives the approximation in 22 iterations, with p = 140, q = 311,
within an accuracy ∼ 2.6 · 10−6.

As a second application, we take ω1 = 1.3767, ω2 = 0.0818, which according to (4.30)
and (4.31) is precisely the case needed for the dynamics considered in section 4.2.1. Now,
the method needs 36 iterations to get zero-machine accuracy, as shown in Table A.2. As in
the former case, the approximating irreductible fraction, p/q, remains constant along some of
the iterations. Note that now, setting ε = 10−5 as in the former case, the method gives the
approximation in 25 iterations, with p = 29, q = 488, within an accuracy ∼ 8.8 · 10−6.
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