
SoftwareX 11 (2020) 100395

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

nsCouette – A high-performance code for direct numerical
simulations of turbulent Taylor–Couette flow
Jose Manuel López a,∗, Daniel Feldmann b,∗, Markus Rampp c, Alberto Vela-Martín d,
Liang Shi e, Marc Avila b

a Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
b University of Bremen, Center of Applied Space Technology and Microgravity (ZARM), Am Fallturm 2, 28359 Bremen, Germany
c Max Planck Computing and Data Facility (MPCDF), Gießenbachstraße 2, 85748 Garching, Germany
d School of Aeronautics, Universidad Politécnica de Madrid, Plaza del Cardenal Cisneros 3, 28040 Madrid, Spain
e Max Planck Institute for Dynamics and Self-Organization (MPIDS), Bunsenstraße 10, 37073 Göttingen, Germany

a r t i c l e i n f o

Article history:
Received 8 August 2019
Received in revised form 2 December 2019
Accepted 26 December 2019

Keywords:
Wall-bounded turbulence
Rotating shear-flow
Thermal convection
Direct numerical simulation (DNS)
Hybrid parallelization
GPU

a b s t r a c t

We present nsCouette, a highly scalable software tool to solve the Navier–Stokes equations for in-
compressible fluid flow between differentially heated and independently rotating, concentric cylinders.
It is based on a pseudospectral spatial discretization and dynamic time-stepping. It is implemented
in modern Fortran with a hybrid MPI-OpenMP parallelization scheme and thus designed to compute
turbulent flows at high Reynolds and Rayleigh numbers. An additional GPU implementation (C-CUDA)
for intermediate problem sizes and a version for pipe flow (nsPipe) are also provided.

© 2019 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Code metadata

Current code version 1.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_2019_225
Legal Code License GPLv3
Code versioning system used git
Software code languages, tools, and services used Fortran, C (for some housekeeping tasks), MPI, OpenMP
Compilation requirements, operating environments & dependencies Developed and tested under Linux and IBM AIX. Compiler: A Fortran 2003

compiler which is OpenMP-3 compliant, a basic C compiler, an MPI library
with support for MPI_THREAD_SERIALIZED, a serial BLAS/LAPACK library, a
serial but fully thread-safe FFTW-3 installation or equivalent, for output and
visualization (optional): an MPI-parallel HDF5 installation.

Link to developer documentation/manual https://gitlab.mpcdf.mpg.de/mjr/nscouette
Support email for questions nsCouette@zarm.uni-bremen.de

1. Motivation and significance

Flows in engineering and nature are often characterized by
large Reynolds (Re) or Rayleigh (Ra) numbers. Examples are the
flow of gas in astrophysical disks, atmospheric flows and the

∗ Corresponding authors.
E-mail addresses: jlopez@ist.ac.at (J.M. López),

daniel.feldmann@zarm.uni-bremen.de (D. Feldmann).

cooling of rotating machines. In most cases, it is impossible to
resolve all scales of the turbulent flow in a direct numerical
simulation (DNS). However, DNS provide reliable data to allow
extrapolation to the large Re limit and to enable the development
of adequate subgrid-scale models. Taylor–Couette (TC) flow – the
flow between two independently rotating concentric cylinders
– stands out as a testbed for these purposes [1,2]. It allows
exploring a variety of physical mechanisms, including buoyancy,
shear, rotation and boundary layers in the vicinity of curved walls.

https://doi.org/10.1016/j.softx.2019.100395
2352-7110/© 2019 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.softx.2019.100395
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2019.100395&domain=pdf
https://github.com/dfeldmann/nsCouette
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://www.openmp.org/
https://en.wikipedia.org/wiki/C_(programming_language)
https://developer.nvidia.com/cuda-toolkit
https://github.com/dfeldmann/nsCouette/tree/nsPipe-1.0
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2019_225
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://www.openmp.org/
https://en.wikipedia.org/wiki/Fortran
https://www.openmp.org/
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Message_Passing_Interface
http://www.netlib.org/blas
http://www.netlib.org/lapack
http://fftw.org/
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Hierarchical_Data_Format
https://gitlab.mpcdf.mpg.de/mjr/nscouette
mailto:nsCouette@zarm.uni-bremen.de
mailto:jlopez@ist.ac.at
mailto:daniel.feldmann@zarm.uni-bremen.de
https://doi.org/10.1016/j.softx.2019.100395
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 J.M. López, D. Feldmann, M. Rampp et al. / SoftwareX 11 (2020) 100395

Our DNS code nsCouette integrates the incompressible Navier–
Stokes equations for TC flow forward in time using cylindrical
coordinates and primitive variables. Optionally, the cylinder walls
can be differentially heated, in which case an additional equation
for the temperature is solved. The goal of this paper is to make
nsCouette publicly available and thus enable DNS of rotating
turbulent shear flows to a wide range of users in the mathematics,
physics and engineering communities.

2. Software description

2.1. Functionality

In nsCouette, the governing equations are discretized using a
pseudospectral Fourier–Galerkin ansatz for the azimuthal (θ ) and
the axial (z) direction. High-order finite differences (FD) are used
in r; the only inhomogeneous direction. The user can select the
distribution of radial grid points at runtime and the stencil-length
of the FD scheme is specified at compile time with a default of
nine points.

Periodic boundary conditions (BC) are assumed in z to avoid
the need for dense grids close to the vertical boundaries. The
comparison between DNS with axially periodic BCs and labora-
tory experiments with solid end-plates is extremely satisfactory
for a wide range of Re from laminar to highly turbulent flows [2].
Additionally, z-periodicity often provides a more accurate model
of astrophysical and geophysical flows and prevents misleading
physical interpretations due to undesired end-wall-effects [3,4].
Details of the method and implementation are published in [5].

The temporal integration scheme has been upgraded to a
predictor–corrector method [6]. This enables a variable time-step
size with dynamic control, which is of advantage if the flow state
is suddenly modified (applying disturbances, changing rotation
rates) or naturally undergoes strongly transient dynamics.

Another significant upgrade is the extension to heat transfer
where a temperature difference between the cylinders is im-
posed. To this end, a Boussinesq-like approximation [7] has been
implemented to account for buoyancy effects. In the distributed
version of nsCouette, a negative temperature gradient in r is
considered, whereas gravity is aligned in z. Other scenarios can
be easily investigated by changing only a few lines of source code.

Additionally, divergence-free initial conditions can be used to
easily excite selected Fourier modes. This enables the user to
systematically investigate different transition scenarios.

A single input file defines all relevant parameters (number
of points, modes and timesteps, rotation rates etc.) at runtime.
At every restart, the spatial resolution can be changed using an
automated interpolation and mode padding functionality.

This and many other convenient features, together with a
number of example Makefiles for the most common high-
performance computing (HPC) platforms, provide newcomers
an easy start into the world of highly-resolved and massively-
parallel DNS. A user guide is included to help non-expert users
get started with nsCouette (compilation, setup, select proper
resolution, analyze data, etc.).

2.2. Software architecture

Over time, nsCouette has been ported to all major CPU-
based HPC platforms. Amongst IBM Power, BlueGene and x86_64
architectures – including a few generations of the prevalent Intel
Xeon multi-core processors – it has also been ported to Xeon Phi
(KnightsLanding), AMD EPYC (Naples, Rome) and ARMv8.1 (Mar-
vell ThunderX2) platforms. Developments for the NEC SX-Aurora
vector architecture and multi-GPU clusters are underway.

Building the executable requires a modern Fortran compiler,
a standard C compiler and only very few additional libraries: MPI,
BLAS/LAPACK, FFTW and optionally HDF5. All of them are com-
monly available as high-quality, open-source software (e.g. GCC,
OpenMPI [8], FFTW [9], OpenBLAS) and as vendor-optimized tool
chains (e.g. Intel Parallel Studio PSXE).

Our code runs on laptops and – for large-enough problems
– efficiently scales up to the largest HPC systems with tens
of thousands of processor cores [10]. The basic architecture of
nsCouette and our design choice for a hybrid MPI-OpenMP
parallelization scheme (HPS) follows straightforwardly from the
Fourier–Galerkin ansatz and from the current technological trend
of multi-core processors with ever increasing core counts and
stagnating per-core performance. The basis of our HPS is a one-
dimensional (1d) MPI-only slab decomposition into Fourier
modes, which can be treated independently of each other in
the computation of the linear terms occurring in the govern-
ing equations. For computing the non-linear terms, global data
transpositions (MPI_Alltoall) and task-local transposes are
employed to gather all modes locally on each MPI task. Therefore,
the number of radial grid points (Nr ), which is typically much
smaller than the number of Fourier modes, imposes a natural
limit to the 1d MPI-only approach. We relax this limit by in-
troducing an additional parallelization layer, such that multiple
cores per MPI task will be allocated to accommodate multi-
ple OpenMP threads. First, this allows to compute the linear
terms in OpenMP-parallel loops over Fourier modes. Second, an
OpenMP-coarse-grain parallelism can be exploited during the
computations of the non-linear terms by overlapping the global
transpositions and the Fourier transformations of state variables.
Overall, when confronted with a 2d MPI-only domain decompo-
sition (e.g. [11]), which might be superior for certain setups, our
HPS is an excellent compromise between versatility, simplicity of
the implementation and achievable peak parallel scalability.

Additionally, we provide a basic GPU version of nsCouette
written in C-CUDA, which implements the exact same numer-
ical schemes as the Fortran version, but currently provides
less output and functionalities. These will be added in the fu-
ture. A CUDA-capable GPU device with compute capability 2.0
(or higher), support for double-precision arithmetic, and NVIDIA’s
CUDA toolkit are required. The GPU version runs on single GPU
devices in a massively parallel setup with thousands of GPU
threads and highly efficient memory management. It relies on
custom CUDA kernels for linear algebra, uses the highly-optimized
cuFFT library to perform Fourier transforms without the need
for inter-node communication and, therefore, provides a clear
speedup with respect to the Fortran code for small problems
that fit into the main memory (RAM) of one GPU.

2.3. Computational performance

The number of MPI tasks can be selected at program start-
up and changed between runs with the only restriction that it
must divide Nr . The HPS of nsCouette achieves a scalability
well beyond the limitations imposed by 1d MPI-only approaches
and maps naturally to the prevailing multi-node, multi-core HPC
architectures. Specifically, the flexibility to choose appropriate
combinations for the numbers of MPI tasks per node and OpenMP
threads per MPI task has proven key for achieving good perfor-
mance across a wide range of architectures from 16 to 64 cores
per node. On such machines, nsCouette enables highly resolved
DNS with Nr = O(103) using O(104) cores [5]. In absolute
terms, for an intermediate problem size with Nr = 512 and
513 × 1025 Fourier modes (i.e. Re up to O(104)), the computa-
tion of a single timestep takes less than a second on 64 nodes
(2560 cores) of a contemporary HPC cluster (Fig. 1) and requires

https://github.com/dfeldmann/nsCouette
https://github.com/dfeldmann/nsCouette
https://github.com/dfeldmann/nsCouette
https://github.com/dfeldmann/nsCouette
https://github.com/dfeldmann/nsCouette
https://github.com/dfeldmann/nsCouette
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Message_Passing_Interface
http://www.netlib.org/blas
http://www.netlib.org/lapack
http://fftw.org/
https://en.wikipedia.org/wiki/Hierarchical_Data_Format
https://gcc.gnu.org/
https://www.open-mpi.org/
http://fftw.org/
https://www.openblas.net/
https://github.com/dfeldmann/nsCouette
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://www.openmp.org/
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://www.openmp.org/
https://www.openmp.org/
https://www.openmp.org/
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://github.com/dfeldmann/nsCouette
https://en.wikipedia.org/wiki/C_(programming_language)
https://developer.nvidia.com/cuda-toolkit
https://en.wikipedia.org/wiki/Fortran
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://github.com/dfeldmann/nsCouette
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://www.openmp.org/
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://github.com/dfeldmann/nsCouette


J.M. López, D. Feldmann, M. Rampp et al. / SoftwareX 11 (2020) 100395 3

Fig. 1. Runtime per timestep and breakdown into the main algorithmic components (different colors) of a typical nsCouette run (Nr = 512 and 513 × 1025
Fourier modes) computed on 32 and 64 dual-socket nodes of various HPC clusters, using a platform-specific number of MPI tasks/node (TpN). IVB: Intel Xeon
E5-2680v2 (IvyBridge), 20 cores/node. BDW: Intel Xeon E5-2698v4 (Broadwell), 40 cores/node. SKL: Intel Xeon 6148 (Skylake), 40 cores/node. KNL: Intel Xeon
Phi 7230 (KnightsLanding), 64 cores/node. ARM: Marvell ThunderX2 ARM v8.1, 64 cores/node. The IVB and BDW clusters employ a Mellanox InfiniBand FDR
network (56Gbit s−1), whereas SKL and KNL use Intel OmniPath (100Gbit s−1). The ARM cluster is interconnected with Cray Aries (80Gbit s−1). nsCouette was built
using platform-optimized software tool chains (i.e. compilers and libraries) but no platform-specific optimization of the source code was performed. Corresponding
Makefiles are shipped with the code. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

roughly 450GB of RAM. On the SKL platform, this run achieves
a performance of 1.5 TFlop/s, which, due to a rather moderate
arithmetic intensity of the algorithm (0.3), is bounded by the
memory bandwidth. When increasing the number of cores for a
fixed problem size, the computations of the FFT and linear terms
show very good strong scalability, whereas the global transposes
ultimately limit the total parallel efficiency at large core counts
(Fig. 1). A comprehensive study of the parallel scalability and
efficiency of nsCouette has been presented in [5], and its po-
tential to scale up to extremely high core counts was shown
in [10]. The upgraded version presented here exhibits the same
scalability and maintains consistent performance over a range of
different HPC systems without the need for any platform-specific
adaptations of the source code.

The performance of the GPU-accelerated version was tested
on two NVIDIA graphics cards based on the Volta architecture:
Titan V and Tesla V100 (Fig. 2). The runtime per timestep has
been found to be similar on both cards over a wide range of
problem sizes. The speed-up of the GPU version compared to the
HPS version running on one node was shown to vary between
a factor of three and 17, depending on the problem size and
the particular choice of platform used as reference. Comparing a
single GPU run against an MPI-OpenMP run on a single CPU node
is a reasonable choice, since for server-class hardware both set-
ups are roughly comparable in terms of price and electrical power
consumption. However, 16 nodes (256 cores) were necessary to
outperform the GPU version for small problems. Currently, the
maximum problem size applicable to the GPU version is limited
by the amount of RAM available on the graphics card.

2.4. Data analysis and visualization

In nsCouette, the spectral coefficients and the primitive
variables are dumped to individual files for each timestep at
user-specified output intervals. It implements an easy-to-use
checkpoint-restart mechanism based on the coefficients for han-
dling long-running DNS. The primitive variables – velocity (ur ,
uθ , uz), pressure (p) and optionally temperature (T ) – are written
in HDF5 format, along with metadata in small xdmf files in
order to facilitate analysis with common visualization software

Fig. 2. Performance of the GPU-accelerated version of nsCouette compared to
the MPI-OpenMP version. Runtime per timestep for different numbers of degrees
of freedom (DOF). The GPU code ran on a single NVIDIA Titan V and a single
Tesla V100 graphics card. It was built using NVIDIA’s CUDA toolkit version 10.1.
The hybrid code was built using Intel’s PSXE2018 and ran on one and 16 nodes
of different platforms. BDW: Intel Xeon E5-2620v4 (Broadwell), 16 cores/node,
Mellanox InfiniBand FDR network (56Gbit s−1). SKL: Intel Xeon 6148 (Skylake),
40 cores/node. Solid (dashed) lines represent runs with Nr = 64 (Nr = 128)
radial points.

like ParaView and VisIt. Both tools allow loading sequences
of xdmf files produced by nsCouette. Sample scripts based
on the Python interface of VisIt, as well as a custom-made
ParaView filter for handling the cylindrical coordinate system
are distributed with the code. A detailed visualization tutorial is
included in the user guide. This enables the user to easily perform
comprehensive visual and quantitative analysis of the flow field.

2.5. Quality assurance

Verification and validation (V&V) of nsCouette is
documented in [5]. For maintaining the correctness of the source
code, we make extensive use of the continuous integration (CI)

https://github.com/dfeldmann/nsCouette
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://github.com/dfeldmann/nsCouette
https://github.com/dfeldmann/nsCouette
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://www.openmp.org/
https://github.com/dfeldmann/nsCouette
https://en.wikipedia.org/wiki/Hierarchical_Data_Format
http://www.xdmf.org
https://github.com/dfeldmann/nsCouette
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://www.openmp.org/
https://developer.nvidia.com/cuda-toolkit
https://en.wikipedia.org/wiki/ParaView
https://en.wikipedia.org/wiki/VisIt
http://www.xdmf.org
https://github.com/dfeldmann/nsCouette
https://www.python.org/
https://en.wikipedia.org/wiki/VisIt
https://en.wikipedia.org/wiki/ParaView
https://github.com/dfeldmann/nsCouette


4 J.M. López, D. Feldmann, M. Rampp et al. / SoftwareX 11 (2020) 100395

Fig. 3. Temporal evolution of the Nusselt number (Nui) at the inner cylinder wall and the streamwise velocity component (uθ ) at a mid-gap position as the Rayleigh
number (Ra) increases for a fixed inner cylinder rotation (Rei = 50). The final flow state for each Ra is visualized with instantaneous temperature iso-surfaces (T = 0),
which are color-coded by inwards/outwards (blue/red) facing values of the wall-normal velocity component (ur ). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

functionality of gitlab. Upon every push to the repository, a
number of regression tests are automatically triggered, including
builds of the code in various configurations and a static code
analysis using the Forcheck tool. In addition, a number of short
test runs are automatically launched using runtime-checks and
the tightest debug settings of the compiler to identify undefined
variables, out-of-bounds errors and alike. The numerical results
are then rigorously verified against previously recorded refer-
ence runs. A final validation run compares the wave speed of a
simulated wavy vortex flow with an experimentally determined
value [12], which is considered successful if the wave speeds
match up to 10−4. The entire CI configuration, the V&V results for
every push, and an auto-generated source code documentation
(Ford) – including dependencies and call graphs – are publicly
accessible through the web interface of our development site.

3. Illustrative example

The fluid flow between a hot rotating cylinder and a cooled
stationary enclosure is a simple model to investigate heat transfer
in many engineering applications [13] such as cooling of rotating
machinery [14]. At low angular speeds (Rei) and small tempera-
ture differences (Ra), the heat transfer is purely conductive. In this
simple case, termed basic state, the governing equations admit
analytic solutions for uθ and T , which only depend on r . The
heat transfer can be enhanced by either increasing Rei(forced
convection) or by increasing Ra (natural convection). In both
cases, the basic state exhibits a sequence of distinct instabilities
ultimately leading to turbulent heat transfer [15]. A measure of
the efficiency is given by the Nusselt number (Nui), which is the
ratio of total heat transfer at the inner cylinder, normalized by
that of the basic state at the same temperature difference.

Fig. 3 summarizes the results of three DNS with increasing
temperature difference at a fixed rotation rate, using nsCouette.
The first DNS was initialized by applying small single harmonic
disturbances to the basic state at Rei = 50 and Ra= 2130. Fig. 3a
shows that initially Nui ≈ 1, corresponding to purely conductive
heat transfer. However, after roughly two viscous time units, a
sharp increase of Nuiis observed, indicating that the basic state
has become unstable. This is confirmed by the time-series of uθ

at a fixed probe location in the computational domain (Fig. 3b).

The final state of this run is visualized in Fig. 3c. It shows a
three-dimensional rendering of a T = 0 iso-surface generated
with ParaView. The spiral flow pattern rotates at a constant
speed without changing its shape; like a barber pole. It passes
repeatedly through the probe location, what explains why the
uθ signal reaches a periodic state (2.5d2/ν > t > 3.5d2/ν). Its
constant shape explains why the integral heat flux (Nui), on the
other hand, remains constant at the same time. The second and
third DNS were initialized with the final state of the former runs
and by increasing the Rayleigh number to Ra= 2840 and 3550,
respectively. The time series and final states in Fig. 3 reveal, that
the TC system undergoes a sequence of transitions to different
flow states with increasing spatio-temporal complexity as Ra
increases. These, and other illustrative examples, are documented
in the tutorial section of the user guide.

4. Impact

Our software completes the list of publicly available Navier–
Stokes solvers for the three most common prototypes of wall-
bounded shear flow: plane Couette flow (channelflow [16]),
pipe flow (openpipeflow [11]) and Taylor–Couette flow
(nsCouette). It can be quickly installed and productively used by
researchers interested in pattern formation and chaos, for which
TC flow has long been a paradigm [17]. The example of Section 3
can be run in a laptop and is meant to illustrate how easy results
can be obtained and analyzed.

We however stress that the main aim of providing nsCouette
is to make the full potential of a massively-parallel and highly-
scalable DNS code readily usable and, therefore, valuable for the
broad scientific community. It enables users with little experience
in HPC and DNS to easily perform highly-resolved simulations
of turbulence. Among other software design choices, this was
achieved by providing a user friendly build process that supports
many pre-configured HPC architectures, easy runtime handling
of all control parameters, tailored visualization tools, a com-
prehensive user guide and thorough internal quality assurance.
Thus, nsCouette is a powerful tool to study highly-turbulent
shear flows. For example, it has already contributed to a bet-
ter understanding of astrophysical [18] and geophysical [19,20]
flows.

http://mjr.pages.mpcdf.de/nscouette/ford-doc/
https://gitlab.mpcdf.mpg.de/mjr/nscouette
https://gitlab.mpcdf.mpg.de/mjr/nscouette
https://gitlab.mpcdf.mpg.de/mjr/nscouette
https://gitlab.mpcdf.mpg.de/mjr/nscouette
https://gitlab.mpcdf.mpg.de/mjr/nscouette
https://gitlab.mpcdf.mpg.de/mjr/nscouette
https://gitlab.mpcdf.mpg.de/mjr/nscouette
https://gitlab.mpcdf.mpg.de/mjr/nscouette
https://gitlab.mpcdf.mpg.de/mjr/nscouette
https://gitlab.mpcdf.mpg.de/mjr/nscouette
https://gitlab.mpcdf.mpg.de/mjr/nscouette
https://gitlab.mpcdf.mpg.de/mjr/nscouette
https://gitlab.mpcdf.mpg.de/mjr/nscouette
https://gitlab.mpcdf.mpg.de/mjr/nscouette
https://gitlab.mpcdf.mpg.de/mjr/nscouette
https://github.com/dfeldmann/nsCouette
https://en.wikipedia.org/wiki/ParaView
http://www.channelflow.ch
http://www.openpipeflow.org
https://github.com/dfeldmann/nsCouette
https://github.com/dfeldmann/nsCouette
https://github.com/dfeldmann/nsCouette


J.M. López, D. Feldmann, M. Rampp et al. / SoftwareX 11 (2020) 100395 5

Because of its modular structure, which closely follows the
numerical formulation, and its moderate code complexity (in
particular the HPS), new functionalities can be easily added to
nsCouette, with given algorithmic domain knowledge and basic
programming skills. As an example for this, we also provide
nsPipe; a modified version to simulate flows in straight pipes.
It follows the numerical formulation of openpipeflow [11] and
uses the parallel infrastructure of nsCouette, as detailed in the
user guide. Extensions including the modeling of polymer addi-
tives [21] and two-phase flows [22] have already been developed
and tested and will be released in the future.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was supported by the Max Planck Society and par-
tially funded by the German Research Foundation (DFG) through
the priority programme Turbulent Superstructures (SPP1881).
AVM was supported by the European Research Council (ERC)
through the COTURB project (ERC-2014.AdG-669505). Computa-
tional resources provided by the following institutions are grate-
fully acknowledged: The Argonne Leadership Computing Facil-
ity, which is a DOE Office of Science User Facility (DE-AC02-
06CH11357). The Isambard UK National Tier-2 HPC Service op-
erated by GW4 and the UK Met Office, and funded by EPSRC
(EP/P020224/1). Further computations were performed on the
HPC systems Hydra, Draco and Cobra at the MPCDF in Garching.

References

[1] Bazilevs Y, Akkerman I. Large eddy simulation of turbulent Taylor–Couette
flow using isogeometric analysis and the residual-based variational mul-
tiscale method. J Comput Phys 2010;229(9):3402–14. http://dx.doi.org/10.
1016/j.jcp.2010.01.008.

[2] Grossmann S, Lohse D, Sun C. High-Reynolds number Taylor–Couette
turbulence. Annu Rev Fluid Mech 2016;48(1):53–80. http://dx.doi.org/10.
1146/annurev-fluid-122414-034353.

[3] Edlund EM, Ji H. Nonlinear stability of laboratory quasi–Keplerian flows.
Phys Rev E 2014;89(2). 021004. http://dx.doi.org/10.1103/PhysRevE.89.
021004.

[4] Lopez JM, Avila M. Boundary-layer turbulence in experiments on quasi–
Keplerian flows. J Fluid Mech 2017;817:21–34. http://dx.doi.org/10.1017/
jfm.2017.109.

[5] Shi L, Rampp M, Hof B, Avila M. A hybrid MPI-OpenMP parallel
implementation for pseudospectral simulations with application to Taylor–
Couette flow. Comput & Fluids 2015;106:1–11. http://dx.doi.org/10.1016/j.
compfluid.2014.09.021.

[6] Guseva A, Willis AP, Hollerbach R, Avila M. Transition to magnetorotational
turbulence in Taylor–Couette flow with imposed azimuthal magnetic field.
New J Phys 2015;17(9). 093018. http://dx.doi.org/10.1088/1367-2630/17/
9/093018.

[7] Lopez JM, Marques F, Avila M. The Boussinesq approximation in rapidly
rotating flows. J Fluid Mech 2013;737:56–77. http://dx.doi.org/10.1017/jfm.
2013.558.

[8] Gabriel E, Fagg GE, Bosilca G, Angskun T, Dongarra JJ, Squyres JM, Sahay V,
Kambadur P, Barrett B, Lumsdaine A, Castain RH, Daniel DJ, Graham RL,
Woodall TS. Open MPI: Goals, concept, and design of a next generation MPI
implementation. In: Kranzlmüller D, Kacsuk P, Dongarra J, editors. Recent
advances in parallel virtual machine and message passing interface. Lecture
notes in computer science, vol. 3241, Berlin, Heidelberg: Springer; 2004,
p. 97–104. http://dx.doi.org/10.1007/978-3-540-30218-6_19.

[9] Frigo M, Johnson S. The design and implementation of FFTW3. Proc IEEE
2005;93(2):216–31. http://dx.doi.org/10.1109/JPROC.2004.840301.

[10] Rampp M, Lopez JM, Shi L, Hof B, Avila M. Extreme scaling of nscouette,
a pseudospectral DNS code. In: INSIDE: innovative supercomputing in
Germany, Vol. 12. (2):2014, p. 48–50.

[11] Willis AP. The openpipeflow Navier–Stokes solver. SoftwareX 2017;6:124–
7. http://dx.doi.org/10.1016/j.softx.2017.05.003.

[12] King GP, Lee W, Li Y, Swinney HL, Marcus PS. Wave speeds in wavy
Taylor-vortex flow. J Fluid Mech 1984;141:365–90. http://dx.doi.org/10.
1017/S0022112084000896.

[13] Ali M, Weidman PD. On the stability of circular Couette flow with
radial heating. J Fluid Mech 1990;220:53–84. http://dx.doi.org/10.1017/
S0022112090003184.

[14] Howey DA, Childs PRN, Holmes AS. Air-gap convection in rotating electrical
machines. IEEE Trans Ind Electron 2012;59(3):1367–75. http://dx.doi.org/
10.1109/TIE.2010.2100337.

[15] Lopez JM, Marques F, Avila M. Conductive and convective heat trans-
fer in fluid flows between differentially heated and rotating cylinders.
Int J Heat Mass Transfer 2015;90:959–67. http://dx.doi.org/10.1016/j.
ijheatmasstransfer.2015.07.026.

[16] Gibson JF. Channelflow: A spectral Navier–Stokes simulator in C++. Tech.
rep., University of New Hampshire; 2014, www.channelflow.org.

[17] Fardin MA, Perge C, Taberlet N. ‘‘The hydrogen atom of fluid dynamics’’
– introduction to the Taylor–Couette flow for soft matter scientists. Soft
Matter 2014;10(20):3523. http://dx.doi.org/10.1039/c3sm52828f.

[18] Shi L, Hof B, Rampp M, Avila M. Hydrodynamic turbulence in quasi-
Keplerian rotating flows. Phys Fluids 2017;29(4). 044107. http://dx.doi.org/
10.1063/1.4981525.

[19] Leclercq C, Partridge JL, Augier P, Caulfield C-CP, Dalziel SB, Linden PF.
Nonlinear waves in stratified Taylor–Couette flow. Part 1. Layer formation.
2016, arXiv:1609.02885.

[20] Leclercq C, Partridge JL, Caulfield C-CP, Dalziel SB, Linden PF. Nonlinear
waves in stratified Taylor–Couette flow. Part 2. Buoyancy flux. 2016,
arXiv:1609.02886.

[21] Lopez JM, Choueiri GH, Hof B. Dynamics of viscoelastic pipe flow at low
reynolds numbers in the maximum drag reduction limit. J Fluid Mech
2019;874:699–719. http://dx.doi.org/10.1017/jfm.2019.486.

[22] Song B, Plana C, Lopez JM, Avila M. Phase-field simulation of core-annular
pipe flow. Int J Multiph Flow 2019;117:14–24. http://dx.doi.org/10.1016/j.
ijmultiphaseflow.2019.04.027.

https://github.com/dfeldmann/nsCouette
https://github.com/dfeldmann/nsCouette/tree/nsPipe-1.0
http://www.openpipeflow.org
https://github.com/dfeldmann/nsCouette
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
https://www.tu-ilmenau.de/turbspp/
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://gw4.ac.uk/isambard
http://dx.doi.org/10.1016/j.jcp.2010.01.008
http://dx.doi.org/10.1016/j.jcp.2010.01.008
http://dx.doi.org/10.1016/j.jcp.2010.01.008
http://dx.doi.org/10.1146/annurev-fluid-122414-034353
http://dx.doi.org/10.1146/annurev-fluid-122414-034353
http://dx.doi.org/10.1146/annurev-fluid-122414-034353
http://dx.doi.org/10.1103/PhysRevE.89.021004
http://dx.doi.org/10.1103/PhysRevE.89.021004
http://dx.doi.org/10.1103/PhysRevE.89.021004
http://dx.doi.org/10.1017/jfm.2017.109
http://dx.doi.org/10.1017/jfm.2017.109
http://dx.doi.org/10.1017/jfm.2017.109
http://dx.doi.org/10.1016/j.compfluid.2014.09.021
http://dx.doi.org/10.1016/j.compfluid.2014.09.021
http://dx.doi.org/10.1016/j.compfluid.2014.09.021
http://dx.doi.org/10.1088/1367-2630/17/9/093018
http://dx.doi.org/10.1088/1367-2630/17/9/093018
http://dx.doi.org/10.1088/1367-2630/17/9/093018
http://dx.doi.org/10.1017/jfm.2013.558
http://dx.doi.org/10.1017/jfm.2013.558
http://dx.doi.org/10.1017/jfm.2013.558
http://dx.doi.org/10.1007/978-3-540-30218-6_19
http://dx.doi.org/10.1109/JPROC.2004.840301
http://refhub.elsevier.com/S2352-7110(19)30229-8/sb10
http://refhub.elsevier.com/S2352-7110(19)30229-8/sb10
http://refhub.elsevier.com/S2352-7110(19)30229-8/sb10
http://refhub.elsevier.com/S2352-7110(19)30229-8/sb10
http://refhub.elsevier.com/S2352-7110(19)30229-8/sb10
http://dx.doi.org/10.1016/j.softx.2017.05.003
http://dx.doi.org/10.1017/S0022112084000896
http://dx.doi.org/10.1017/S0022112084000896
http://dx.doi.org/10.1017/S0022112084000896
http://dx.doi.org/10.1017/S0022112090003184
http://dx.doi.org/10.1017/S0022112090003184
http://dx.doi.org/10.1017/S0022112090003184
http://dx.doi.org/10.1109/TIE.2010.2100337
http://dx.doi.org/10.1109/TIE.2010.2100337
http://dx.doi.org/10.1109/TIE.2010.2100337
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.07.026
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.07.026
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.07.026
http://www.channelflow.org
http://dx.doi.org/10.1039/c3sm52828f
http://dx.doi.org/10.1063/1.4981525
http://dx.doi.org/10.1063/1.4981525
http://dx.doi.org/10.1063/1.4981525
http://arxiv.org/abs/1609.02885
http://arxiv.org/abs/1609.02886
http://dx.doi.org/10.1017/jfm.2019.486
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2019.04.027
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2019.04.027
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2019.04.027

	nsCouette – A high-performance code for direct numerical simulations of turbulent Taylor–Couette flow
	Motivation and significance
	Software description
	Functionality
	Software architecture
	Computational performance
	Data analysis and visualization
	Quality assurance

	Illustrative example
	Impact
	Declaration of competing interest
	Acknowledgments
	References


