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Abstract. The unfolding due to imperfections of a gluing bifurcation occurring in a periodi-
cally forced Taylor–Couette system is analyzed numerically. In the absence of imperfections,
a temporal glide-reflection Z2 symmetry exists, and two global bifurcations occur within
a small region of parameter space: a heteroclinic bifurcation between two saddle two-tori and
a gluing bifurcation of three-tori. As the imperfection parameter increase, these two global bi-
furcations collide, and all the global bifurcations become local (fold and Hopf bifurcations).
This severely restricts the range of validity of the theoretical picture in the neighborhood of
the gluing bifurcation considered, and has significant implications for the interpretation of
experimental results.
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1 Introduction

Most natural systems contain more than two frequencies, and the behavior of systems with three fre-
quencies is still not well understood; it is not even known whether there are universal three-frequency
behaviors (Glazier and Libchaber [14]). However, to date, known examples of three-tori (T3) in Navier–
Stokes type systems are scarce, and most of them have been reported for studies where the equations have
been discretized spectrally and only a small number of modes were retained (Franceschini [10]; Giberti and
Zanasi [13]).

The results presented here are of T3 solutions from a numerical computation of the Navier–Stokes equa-
tions with no-slip boundary conditions, restricted to an axisymmetric subspace. The system is periodically
forced, and has a discrete (Z2) space-time symmetry. The T3 solutions for the symmetric system where
reported in Lopez and Marques [18]. The T3 exhibit a rich dynamics including two global bifurcations,
a heteroclinic cycle and a gluing bifurcation.

Global bifurcations play a key role as organizing centers in fluid dynamics, especially where multiple
states co-exist. Their systematic study has generally been limited to theoretical analysis of normal forms
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Fig. 1. Schematic of the flow configuration

and other low-dimensional canonical models, and to experimental investigations. A class of global bifurca-
tions that has been receiving much attention of late is the gluing bifurcation (Cox [8]; Armbruster et al. [5];
Abshagen et al. [2]). This is a global bifurcation where two symmetrically related time-periodic states simul-
taneously become homoclinic to an unstable saddle state and result in a single symmetric time-periodic state,
as a parameter is varied.

Although symmetric systems are very important and have particularly interesting dynamics (Golubitsky
et al. [16]; Chossat and Lauterbach [7]), they are idealizations. Any real system is not exactly symmetric,
due to the presence of unavoidable imperfections, however small. This raises the problem of the effect of the
imperfections on the dynamics of a symmetric system. The effects of very small imperfections on the gluing
bifurcation in the temporally forced Taylor–Couette flow was analyzed in Marques et al. [22], where good
agreement with the theoretical analysis of the unfolding of the gluing bifurcation was found for very small
values of the imperfection parameter. In this paper, we analyze the drastic changes that the 3-tori branches
undergo when the magnitude of the imperfection is increased.

The model problem we consider is the flow between two coaxial finite cylinders (see Fig. 1) with station-
ary top and bottom end-walls and outer cylinder. The inner cylinder rotates at constant angular velocity Ωi
and oscillates in the axial direction with velocity W sin(Ω f t), where Ωi , Ω f , and W are dimensional param-
eters. Its radius is ri , the radius of the outer cylinder is ro, their length is L and the annular gap between the
cylinders is d = ro −ri . The nondimensional governing parameters are:

the radius ratio e = ri/ro,
the length-to-gap ratio Λ = L/d,
the Couette flow Reynolds number Ri = driΩi/ν,
the axial Reynolds number Ra = Wd/ν,
and the nondimensional forcing frequency ω f = d2Ω f /ν.

From now on, all variables and parameters are rendered non-dimensional, using the gap d and the viscous
time d2/ν as units for space and time respectively. The basic flow is time-periodic with period Tf = 2π/ω f ,
synchronous with the forcing and independent of the azimuthal coordinate. The incompressible Navier–
Stokes equations governing this problem are invariant to rotations about the common axis, SO(2), and
a temporal glide-reflection Z2. This Z2 group is generated by the discrete symmetry S that is a reflection
orthogonal to the axis with a simultaneous time translation of a half forcing period and satisfies S2 = I . The
groups SO(2) and Z2 commute for this problem. The equations are solved in an axisymmetric subspace
invariant to SO(2), and so the only relevant symmetry group is Z2.
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Recent experimental investigations of unforced Taylor–Couette flow in annuli with length-to-gap ratios
Λ of order 10 have identified stable T3 solutions and Shil’nikov-type dynamics (Abshagen et al. [1]), and
also the presence of an imperfect gluing bifurcation (von Stamm et al. [27]; Abshagen et al. [2]). Analy-
sis of the experimental results indicate that the dynamics associated with the gluing bifurcation take place
in an axisymmetric (SO(2) invariant) subspace, even though the observations of these dynamics are from
solutions with broken SO(2) symmetry. We have also found a gluing bifurcation in computed solutions of
the temporally forced Taylor–Couette system with Λ = 10 (Lopez and Marques [18]; Marques et al. [23];
Marques et al. [22]). It is very difficult to drive a pure sinusoidal oscillation in an experiment, and since for
deviations from sinusoidal oscillations S ceases to be a symmetry group of the system, an imperfection of
the sinusoidal forcing is considered here. The spatio-temporal glide reflection symmetry can be broken in
a very controlled and simple manner, by adding a small multiple of the first temporal harmonic of the forc-
ing. The axial oscillations are given by the expression W[sin(Ω f t)+ ε sin(2Ω f t)], where ε is a measure of
the imperfection.

The axisymmetric Navier–Stokes equations have been solved with the spectral-projection method de-
scribed in Marques et al. [23] and Lopez et al. [20], using 80 axial and 64 radial modes, and a time-step
δt = Tf /200. The boundary conditions where the endwalls meet the moving inner cylinder are discontin-
uous, and an accurate numerical treatment that mimics the experimental conditions has been used to deal
with this discontinuity (see Lopez and Shen [21] for details). Here, we only consider variations in Ri and
ε, keeping all other parameters fixed (Λ = 10, e = 0.905, Ra = 80, ω f = 30). The identification of the T3

solutions was significantly helped by the use of a global Poincaré map for the system (i.e., strobing at the
forcing frequency ω f ).

The spectral convergence of the code was carefully analyzed in Lopez and Shen [21]; for Ri values one
order of magnitude larger (Ri = 3000) than the ones used in this study (Ri ∼ 280), and with the same reso-
lution (80×64 modes) the velocity field converges to five figures (1 : 105). Some of the dynamical changes
reported in this paper take place in a very small Ri range; increasing the resolution (the number of modes)
produces a small shift in Ri, without altering the nature of the reported bifurcations. This same behavior has
been reported in a similar problem (Lopez et al. [19]).

2 The symmetric system, ε = 0

The analysis of the dynamics when the space-time symmetry is not broken (ε = 0) was studied in Marques
et al. [23]. A one-dimensional route in parameter space was analyzed, by increasing the Reynolds number
Ri. The system undergoes a sequence of local and global bifurcations and becomes chaotic. This route to
chaos involves a new and convoluted symmetry breaking, including heteroclinic, homoclinic, and gluing
bifurcations of T3.

An overall description of our one-dimensional path is schematically presented in Fig. 2. The solid curves
correspond to stable T, T2, and T3 solution branches which were encountered. The dashed curves connect-
ing them, corresponding to unstable solution branches, are only plausible conjectures. The unstable solutions
have been computed numerically only very close to the homoclinic and heteroclinic bifurcation processes,
and the conjectured connections are based on some of the physical properties of the corresponding flows
(Marques et al. [23]). The primary branch consists of S-invariant tori. The basic state, due to the periodic
forcing, is a limit cycle T 1

p that undergoes a supercritical Neimark–Sacker bifurcation to a two-torus, T 2
p , at

the point labeled NS. This is the generic scenario of a Z2-symmetric Neimark–Sacker (Kuznetsov [17]). The
resulting T2 is S-invariant, but obviously the solutions (trajectories) on it are not S-invariant by virtue of the
fact that the two frequencies on the T2 are incommensurate. This T2 loses stability, but remains S-invariant
as Ri is increased, and solution trajectories evolve towards a T3.

The T3 branch that exists and is stable in the range Ri ∈ [A, C] in Fig. 2 is born at a heteroclinic bifurca-
tion with two S-symmetrically related unstableT2, at point A in the figure. At this same point A, T 2

p becomes
unstable. The emerging three-tori, T 3

p , is S-invariant. With an increasing Ri, T 3
p becomes homoclinic to the

unstable T2 from the primary branch (T 2
p ) at point B. At this homoclinic point, the T3 suffers a symmetry-

breaking reverse gluing bifurcation and splits into two non-symmetric T3, T 3
t and T 3

b , that are symmetrically
related (S transforms one into the other).
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Fig. 2. Bifurcation diagram for the ε = 0 case,
showing the primary, secondary and T3 branches;
the solid (dashed) lines are the stable (unstable)
branches

Over the range of Ri where three-tori solutions exist, the second frequency associated with the T2 so-
lutions is almost constant, ωs = 5.2 ±3%. In contrast, the third frequency associated with the T3, ωVLF,
is very small, and the corresponding period TVLF = 2π/ωVLF experiences dramatic changes over this pa-
rameter range, as shown in Fig. 3a. This figure shows the two Ri values where TVLF becomes unbounded,
corresponding to the heteroclinic bifurcation at A and the gluing bifurcation at B. The T3 bifurcations are
schematically shown in Fig. 3b. For ease of discussion, we representT3 as limit cycles andT2 as fixed points.
This analogy works since the two suppressed frequencies, ω f and ωs, are almost constant over the range of
interest in Ri (in fact, ω f is constant), and they do not play an essential role in the dynamics near the bifur-
cation points of the T3. The gluing bifurcation is the only symmetry breaking bifurcation we have observed
in this system. The importance of the Z2 symmetry in the Taylor–Couette problem, and its association with
complex dynamics (e.g., homoclinic and Shil’nikov bifurcations) was pointed out by Mullin and Cliffe [25],
and was also reviewed in Mullin [24].

Increasing Ri beyond a critical value (point C in Fig. 2), the T3 branch cannot be continued further and
the flow evolves to a T2 that is not S-invariant. In fact, there are two such T2 branches, symmetrically re-
lated, termed secondary branch in Fig. 2. Along these secondary branches, a standard (i.e., not influenced
by symmetries) route to chaos via quasi-periodicity, with lockings in resonance horns and torus break-ups,
is observed. These secondary T2 branches are robust, i.e., they exist for a much larger range in Ri than the
T

3 branches.
The second frequency of the T2 solutions is associated with an unsteady coupling between the endwall

vortices and the jets emanating from the boundary layer on the inner cylinder, and manifests itself in the form

Fig. 3. (a) Variation of TVLF = 2π/ωVLF with Ri for ε = 0. Symbols correspond to computed cases and lines are logarithmic
fits. (b) Schematic of the bifurcation sequence for the T3 solutions depicted in a). In this schematic, T2 are represented as fixed
points and T3 as cycles
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Fig. 4. Bifurcation diagram for the unfolding of the gluing bifurcation

of modulations located close to either the top or bottom endwall. These modulated stable secondary branches
are accordingly named T 2

t and T 2
b . The symmetric T2 on the primary branch (T 2

p ) has modulations near both
endwalls, as do the other various unstable T2, the difference between these is in the relative phase between
the oscillations at both endwalls. The details of these flows can be found in Marques et al. [23].

The three T2 to which the T3 are either heteroclinically or homoclinically asymptotic are the organizing
centers for the dynamics of the T3. In fact, the T3 flows are essentially slow drifts, with very low frequency
(VLF), between the unstable T2. Similar very low frequency states have also been observed experimentally
(von Stamm et al. [26, 27]; Busse et al. [6]) in an unforced Taylor–Couette flow with aspect ratio of order ten,
as is the aspect ratio in our computations.

3 The imperfect system for small ε (< 10−5)

By varying Ri and ε and keeping all other parameters fixed (Λ = 10, e = 0.905, Ra = 80, ω f = 30), we now
analyze the evolution and changes in the T3 branches due to the imperfection parameter ε. In particular, the
gluing bifurcation ( a simultaneous collision of T 3

t and T 3
b with an unstable symmetric T2) no longer exists

due to the forced symmetry breaking.
A classification of possible gluing bifurcation scenarios was obtained and analyzed in Turaev [28];

Turaev and Shil’nikov [29]; Gambaudo et al. [11]. The unfolding of the bifurcation is described by two pa-
rameters, µ (related to the Reynolds number in our problem) and ε, the imperfection parameter. Figure 4 is
a schematic of the bifurcation diagram. The horizontal axis (ε = 0) corresponds to perfect Z2 symmetry. For
µ < 0, a symmetric limit cycle labeled 10 (our T 3

p ) collides with the saddle at µ = 0, forming a homoclinic
curve with two closed loops; for µ > 0, the cycle 10 splits into two asymmetric limit cycles, labeled 0 and 1
(our T 3

t and T 3
b respectively), which are related by the symmetry. For ε �= 0, the gluing bifurcation splits into

two separate single-loop homoclinic bifurcations, corresponding to the solid straight lines in Fig. 4. These
lines delimit four regions. Two of them are extensions of the symmetric case and contain the single limit
cycle 10 or the two limit cycles 1 and 0, which are no longer symmetrically related. In the two additional
regions only one limit cycle exists, 1 and 0 respectively; but there also exist two additional narrow cusp-
shaped regions, where two limit cycles coexist, 1 and 10, and 0 and 10, respectively. The three limit cycles
(0, 1, and 10) involved in the gluing bifurcation in the symmetric case give rise to three branches of limit cy-
cles that disappear in generic homoclinic bifurcations (collision of the limit cycle with a saddle) when ε �= 0,
corresponding to the solid lines in Fig. 4, i.e.; the gluing bifurcation splits into three generic homoclinic bi-
furcations. The dotted line in the figure corresponds to a typical path in the presence of a fixed imperfection
(ε �= 0).

These scenario corresponds to a gluing bifurcation of limit cycles that collide with a fixed point. When
applying this description to a gluing bifurcation of T3, that collides with T2, the situation is much more com-
plicated. The collision of T2 and T3 does not happen on a single curve; the stable and unstable manifolds
of the T2 intersect transversally, and a homoclinic structure exists in an exponentially narrow region of pa-
rameter space. The curves in Fig. 4 become extremely narrow regions; now the gluing bifurcation, as well
as the other homoclinic/heteroclinic curves, are no longer single events, but rather complex bifurcational
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Fig. 5. (a) Variation of TVLF = 2π/ωVLF with Ri. Symbols correspond to computed cases and solid lines are logarithmic fits, for
ε = 3×10−6; dashed lines correspond to ε = 0. (b) Schematic of the bifurcation sequence for the T3 solutions depicted in (a);
in this schematic, T2 are represented as fixed points and T3 as cycles

processes. These take place in exponentially narrow regions, involving an infinite number of periodic solu-
tions of increasing periods, Smale horseshoes and more. The complete picture is unknown. For examples,
details and illustrations of very similar processes, see Kuznetsov [17] § 9.5. These considerations apply to
all the homoclinic/heteroclinic bifurcations we have found, although we will continue talking of bifurcations
instead of complex bifurcational processes in an exponentially narrow region, for ease of exposition.

The T3 solutions have three incommensurate frequencies: the forcing frequency, ω f = 30, a second fre-
quency at ωs ≈ 5.2, and a very low frequency ωVLF which is three orders of magnitude smaller than ωs. We
have used the period TVLF to precisely locate the global bifurcations of the T3 branches. Figures 3a and 5a
show the variation of TVLF as a function of Ri for the symmetric case (ε = 0) and one asymmetric case
(ε = 3×10−6), respectively. The solid curves are best fits of the form TVLF ∼ λ−1 ln(1/|Ri − Ricrit |)+a,
which is the asymptotic behavior of the period close to a homoclinic connection (Gaspard [12]). The
logarithmic fits give the critical Ri for the infinite-period bifurcations; at ε = 0, RiHet = 280.88736 and
RiGlu = 281.00885. The factor λ is the eigenvalue corresponding to the unstable direction of the hyperbolic
fixed point (saddle T2). The values obtained for ε = 0 are λHet = 2.43×10−3 and λGlu = 1.047×10−2. For
ε �= 0, the TVLF → ∞ gluing bifurcation splits into three distinct homoclinic bifurcations as shown in Fig. 5a.
Note that the range in Ri where the 1 and 10 T3 branches coexist (i.e., the width of the cusp region in Fig. 4)
is very narrow for the imperfections considered and so the two distinct homoclinic bifurcations appear to
coincide on the scale of the graphics in Fig. 5a. Specifically, for ε = 3×10−6, the width in Ri of the cusp co-
existence region is 2.40×10−4. This behavior agrees with the theory of the unfolding of a gluing bifurcation,
depicted in Fig. 4. The periods of the T3 follow the same asymptotic logarithmic expression as for ε = 0,
showing that the T3 for ε �= 0 disappear in a collision with a saddle T2 (a generic homoclinic bifurcation).

Figure 5b illustrates schematically the sequence of bifurcations on the T3 branches in the imperfect
(ε �= 0) case; T3 are depicted as limit cycles and T2 as fixed points, as in Fig. 3a. Both the gluing and the
heteroclinic bifurcations become standard homoclinic bifurcations, and we have three different branches, T 3

p ,
T 3

t and T 3
b (corresponding to 10, 0 and 1, respectively, in Fig. 4); these overlap for different values of Ri, in

agreement with the theoretical description in Fig. 4. The equations of the straight lines and the cusp curve
in Fig. 4 can be obtained from the numerical simulations. As a result, we have obtained the saddle index
of the gluing bifurcation (the ratio between the real part of the leading negative eigenvalue and the positive
eigenvalue λ1), δ = −Real(λ2)/λ1 = 1.083 > 1.

3.1 The fate of the three-tori branches

For ε sufficiently small, our numerical simulations produce dynamics precisely in accord with the dynamical
systems theory for the unfolding of a gluing bifurcation: three different branches of T3 exists, and they ap-
pear in homoclinic bifurcations close to the gluing point. But this agreement is achieved only in a very small
range of the imperfection parameter, i.e., for |ε| � 4.5×10−6.

For the particular imperfection considered here, the branch of symmetric T3, labeled T 3
p , undergoes

a close-by (at lower Ri) homoclinic global bifurcation, and when ε increases, the two homoclinic bifurca-
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Fig. 6. (a) TVLF of the T3 branch T3
p for different values of ε. (b) Width of the Ri range for the existence of the T3 branch T3

p ,
as a function of ε

tions at either end of this branch coincide and the T 3
p branch disappears. This collision of global bifurcations

(in this case of two homoclinic bifurcations) alters the bifurcation diagram, dramatically reducing the param-
eter range of validity of the standard unfolding of the gluing bifurcation.

The annihilation of the T 3
p branch is shown in Fig. 6. TVLF as a function of Ri is plotted in Fig. 6a, for

ε = {0, 1, 3, 4, 4.5, 4.6}×10−6. The width of the Ri range over which the T 3
p solutions exist is plotted in

Fig. 6b as a function of ε. This allows a precise determination of the parameter values where the T 3
p branch

disappears: ε � 4.68×10−6 and Ri � 280.93
The two remaining T3 branches, labeled T 3

t and T 3
b , become unstable at higher Ri. With increasing ε,

the homoclinic bifurcation points where these branches are born move apart, one to smaller and the other to
larger Ri, as shown in Fig. 5. Therefore, the parameter range of existence of the asymmetric T3 labeled T 3

t
shrinks until it disappears at about ε ≈ 10−5.

Only one of the T3 branches, T 3
b , is sufficiently robust to be observable in a significant window of param-

eter space (for ε > 10−5). The fate of this branch is addressed in the next section. For negative ε values, the
dynamics is exactly the same as for positive ε, except that top and bottom are interchanged; for example, the
only T3 branch observable for ε < −10−5 is T 3

t . Therefore, we only need to consider the case ε > 0.

4 New branches at larger ε (� 10−4)

For the next order of magnitude in ε, between 10−5 and 10−4, there remains a single branch of T3, T 3
b . This

branch appears at a homoclinic collision with an unstable T2, and becomes unstable at larger Ri, evolving
towards T 2

b , and nothing new happens. For ε � 10−4, a variety of new branches exist and new bifurcations
take place involving the T 3

b branch. The dynamics are very complicated and we present a summary of our
numerical findings, focusing on the most relevant aspects of the new dynamics.

Figure 7 is a schematic bifurcation diagram showing the changes in the branches related to T 3
b , for differ-

ent values of ε in the range [1.0, 1.8]×10−4; these schematic diagrams are not drawn to scale. The branch
T 2

t has not been shown as it does not play any role in the dynamics around the T 3
b branch. Solid (dashed) lines

are stable (unstable) computed branches. When a solution becomes unstable, it evolves towards another sta-
ble solution, and we have indicated these evolutions with thin dotted lines. In the figure, Fn indicates a fold
(also called saddle-node) bifurcation (with zero critical eigenvalue) of a Tn , and Hn indicates a Hopf bifur-
cation (a pair of complex-conjugate purely imaginary eigenvalues) from a Tn to a Tn+1; H0 is the usual Hopf
bifurcation, from a fixed point to a periodic solution, and H1 is a Neimark–Sacker bifurcation, from a limit
cycle to a quasiperiodic solution on a T2.
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Fig. 7a–f. Schematic bifurcation diagrams (not to scale) showing the branches related to T3
b ; the solid (dashed) lines are stable

(unstable) branches, and the thin dotted lines indicate the evolution of a solution when it becomes unstable

The changes displayed in Fig. 7 can be summarized as follows: at ε � 1.2×10−4, an isolated solution
branch appears, in a so-called isola center bifurcation (Golubitsky and Schaeffer [15]). On this branch, at Ri
numbers lower than those of the T 3

b branch, a new T2 (T 2
l ) and a new T3 (T 3

l ) exist. At ε � 1.4×10−4, the
homoclinic bifurcation at the lower end of the T 3

b branch becomes a fold bifurcation when the T 3
b branch de-

velops an S-shaped profile. Moreover, at the high-Ri end of the T 3
b branch, a new T2-branch (T 2

h ) appears.
At ε � 1.5×10−4, the T3-branches T 3

l and T 3
b merge into a single branch (this is called a simple bifurca-

tion in Golubitsky and Schaeffer [15]). Further increases in ε do not produce new bifurcations, and the only
relevant events (up to ε ∼ 3×10−4) are that the T 3

b branch shrinks, and that when T 2
l becomes unstable, it

evolves towards the T 1
p branch instead of T 2

p . In the following subsections we describe in detail the nature
and the bifurcations of the solutions just mentioned.

4.1 The isola branch: T 2
l and T 3

l

At ε � 1.2×10−4, an isolated solution branch appears, that exists in a very narrow Ri range; the width of
the isola is ∆Ri = 0.012 at ε = 1.2×10−4, and grows rapidly with ε; ∆Ri = 0.029 at ε = 1.3×10−4. On
this branch, at low Ri, there is a new T2, T 2

l , which is different from the other T2 that exists for the same pa-
rameter values, the T 2

p on the principal branch. In Fig. 8a phase portraits of the Poincaré maps of both T2 are
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Fig. 8a,b. Phase portraits of the Poincaré map in the (Γ, U) plane, for ε = 1.3×10−4, of (a) T2
l (small closed curve) and T2

p
(large closed curve) for Ri = 280.350; (b) T2

l at Ri = 280.3570 (closed curve) and T3
l at Ri = 280.3575

Fig. 9a–c. Variation of TVLF on the T3
b branch with Ri, for (a) ε = 1.0×10−4, (b) 1.2×10−4, and (c) 1.3×10−4. Symbols

correspond to computed cases and lines are logarithmic fits

shown for the same parameter values, and they are clearly different. By increasing Ri onto the isola branch,
T 2

l undergoes a Hopf bifurcation of T2, H2, leading to a T3-branch, T 3
l . In Fig. 8b, a T 2

l solution and a T 3
l

solution are displayed, just before and after the H2 bifurcation. The amplitude of the T3 is very small, as is
expected at a supercritical Hopf bifurcation.

The phase portraits shown in Fig. 8 and in subsequent figures are the projection of the Poincaré map (time
series strobed at the forcing frequency) into the plane (Γ, U), where U is the radial velocity and Γ the vertical
angular momentum at a convenient Gauss–Lobato point in the annulus (r = ri +0.573, z = 0.969).

4.2 A merging bifurcation of T3

For ε = {1.0, 1.2, 1.3}×10−4, the T 3
b branch still appears at a homoclinic collision with the unstable T 2

p
branch, as evidenced in Fig. 9, showing the variation of TVLF on the T 3

b branch with Ri, with an infinite-
period bifurcation. At ε � 1.4×10−4, the T 3

b branch develops an S-shaped profile, and the global homoclinic
bifurcation becomes a local fold bifurcation, as shown in the schematic in Fig. 7d. Now the upper end of
the T 3

l branch and the lower end of the T 3
b branch are fold bifurcations of T3, F3. By further increasing Ri

these bifurcations occur at closer values of Ri, and at ε � 1.4×10−4 the T 3
l and T 3

b branches merge into
a single branch, as shown in the schematic in Fig. 7e. In Fig. 10 are shown solutions on the T 3

l (Fig. 10a and
T 3

b (Fig. 10b) branches, close to the respective folds F3, for ε = 1.3×10−4. The structure of the T3 in both
branches is almost identical, differing only in size.
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Fig. 10a–c. Phase portraits of the Poincaré map in the (Γ, U) plane of: (a) T3
l at Ri = 280.38, ε = 1.3×10−4; (b) T3

p at Ri =
280.48, ε = 1.3×10−4; and (c) T2

l at Ri = 280.366 (closed curve) and T3
b (torus) at Ri = 280.367, ε = 1.5×10−4

Fig. 11a–c. Phase portraits of the Poincaré map in the (Γ, U) plane of T3
p at Ri = 281.100 (torus), Ri = 281.120 (large closed

curve) and Ri = 281.154 (the six small thick ovals) for ε = 1.5×10−4

The branch resulting from the merging of the T 3
l and T 3

b branches is called T 3
b , the name of the larger

(in both parameters ε and Ri) branch taking part in the merging. Now the T 3
b branch at low Ri terminates

at a Hopf bifurcation, H2, on the T 2
l branch. Fig. 10c shows a T 2

l solution and a T 3
l solution, just before

and after the H2 bifurcation, for ε = 1.5×10−4. The amplitude of the T3 is very small, as is expected at
a supercritical Hopf bifurcation.

4.3 A new T2 branch from T 3
b

For ε � 1.3×10−4, at the high-Ri end of the T 3
b branch, different lockings between the three frequencies

of the T3 appear. Figure 11 shows three solutions at the upper end of the T 3
b branch, for ε = 1.5×10−4.

The first one, at Ri = 281.100, has the shape of a typical Poincaré section of a T3. The second one, at
Ri = 281.120, shows a 1 : 7 locking between the second frequency ωs and ωVLF, which at the upper end
of the T 3

b is no longer very small, but only 1/7 of ωs. This value agrees with Fig. 9, showing how TVLF de-
creases (i.e., ωVLF increases) when Ri increases. The third solution depicted in Fig. 11c shows a different
locking at Ri = 281.154, a 1 : 6 locking between ωs and the forcing frequency ω f .

At the high-Ri end of the T 3
b branch, where the frequency lockings occur, a new bifurcation appears, at

ε � 1.4×10−4. T 3
b undergoes a Hopf bifurcation of T2, H2, onto a T2-branch, T 2

h . Figure 12a shows a T 3
b

solution and a T 2
h solution just before and after the H2 bifurcation. The T 3

b solution is in fact a T2, because
we are inside the 1 : 6 resonance horn between ωs and ω f . The amplitude of the T3 before the bifurcation is
decreasing, as shown in Fig. 11; this is the amplitude associated with the third frequency, the former ωVLF,
that in the figure corresponds to the vertical thickness of the T3. This behavior suggests we have a supercriti-
cal Hopf bifurcation. In fact, the bifurcation is more complex, because it takes place inside or just exiting the
1 : 6 resonance horn of the T3; nevertheless, it is clear from Figs. 11 and 12a that this amplitude collapses.
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Fig. 12a,b. Phase portraits of the Poincaré map in the (Γ, U) plane of: (a) T3
b (the six ovals) at Ri = 281.154 and T2

h at
Ri = 281.155 (large closed curve). (b) T2

b (showing a 1:9 locking) and T2
h (small closed curve) at Ri = 281.16. All solutions

correspond to ε = 1.5×10−4

Fig. 13. Width of the Ri interval where the branch T3
b exists, as

a function of ε

The new T2, T 2
h , is different from the other T2 that exists for the same parameter values on the T 2

b branch. In
Fig. 12b, both T2 are shown for the same parameter values and they are clearly different; in fact, the T2 on
the T 2

b branch shows a 1 : 9 locking, while the T2 on the T 2
h branch is quasiperiodic.

The T 3
b branch, for lower ε values, is born in a homoclinic (global) bifurcation and becomes unstable at

larger Ri through a bifurcation that we are unable to characterize. Following the new bifurcations presented
in this subsection, the T 3

b branch terminates at both ends in local Hopf bifurcations H2, becoming a T2: T 2
l

and T 2
h , at the lower and higher end points of the branch, respectively. The width of the Reynolds number

range, ∆Ri, over which the T 3
b branch exists is plotted as a function of ε in Fig. 13. There is a maximum

in ∆Ri, close to the value of ε where the T 3
b branch merges with the T 3

l branch, and after this merging, ∆Ri
decreases. We have not continued the numerical computations (as they are extremely expensive) to determine
whether the T 3

b branch disappears for some higher value of ε.

4.4 Torus break-up on T 2
b

The branch T 2
b , the robust bottom secondary branch shown in Fig. 2, is not connected directly via local bi-

furcations with the T 3
b branch we have analyzed in detail. It only acts, as can be seen in Fig. 7, as a recipient
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Fig. 14a,b. Phase portraits of the Poincaré map in the (Γ, U) plane of T2
b . (a) ε = 1.2×10−4; Ri = 280.38 (closed curve), Ri =

280.40 (thick closed curve), Ri = 280.45 (circles, locking 1:8), Ri = 281.18 (squares, locking 1:9) and Ri = 281.80 (torus break-
up). (b) ε = 1.3×10−4; Ri = 280.372 (closed curve), Ri = 280.380 (thick closed curve), Ri = 280.40 (circles, locking 1:8), Ri =
281.0 (small solid circles, locking 4:35), Ri = 281.18 (squares, locking 1:9) and Ri = 282.2 (torus break-up)

of the solutions on the T 3
b branch when they become unstable at the high Ri end of the branch. When T 2

b
disappears in a fold bifurcation at low Ri, the solutions evolve towards T 3

b (in fact, towards T 2
l at the lower

end of the T3 branch).
The evolution of the solutions on the T 2

b branch in the Z2-symmetric case (ε = 0) was analyzed in de-
tail in Marques et al. [23]. A typical (i.e. not influenced by symmetries, because the only symmetry of the
system, S, was spontaneously broken in the gluing bifurcation) route to chaos via quasi-periodicity, locking
in resonance horns, and torus break-up was reported. For ε �= 0, we have found the same standard scenario,
differing only in minor details. As the focus of this paper is on the fate of the T3 branches, we do not present
a detailed analysis of the T 2

b branch. The main features are shown in Fig. 14 for two different values of ε,
1.2×10−4 and 1.3×10−4. We have plotted several Poincaré sections of the T2, for different Ri values. At
the start of the branch, where Ri is small, we have a smooth T2, and the solutions on it are quasiperiodic;
these correspond to the smooth closed curves in the figure. Increasing Ri, several resonance horns are en-
tered and exited, corresponding to different frequency locking ratios. Solutions with ratios 1 : 8 and 1 : 9 are
shown in both figures; they are the broadest resonance horns in the parameters range considered as they have
the smallest denominators. Other slender tongues corresponding to higher resonances can also be found, with
increasing difficulty. Figure 14b shows a 4 : 35 locked solution, located between the resonances 1 : 8 and
1 : 9, in agreement with the Farey sequences that describe the order of appearance of the different resonance
horns. By further increasing Ri, there is evidence that the T2 has lost smoothness, displaying the character-
istic wrinkling observed, for example, in Curry and Yorke [9], and becoming a chaotic attractor at higher
Ri. The Afraimovich-Shil’nikov theorem (Afraimovich et al. [3]; Anishchenko et al. [4]) describes distinct
possible scenarios for the destruction of T2 on exiting a resonance horn.

5 Conclusions

We have analyzed in detail the dynamical consequences of the imperfections of a space-time Z2 symmetry in
a real system, Taylor–Couette flow with axial oscillations of the inner cylinder, restricted to an axisymmetric
subspace. A T3 branch appears in the symmetric system as a result of the convoluted spontaneous symmetry
breaking. For very small values of the imperfection parameter (ε), the dynamics agree with the theoretical
scenarios, and three distinct T3 branches are present in the system. However, with further small increases of
the imperfection parameter, two of the branches quickly disappear, leaving a single branch of T3, T 3

b . With
further increases in ε, this branch undergoes drastic changes: the global homoclinic bifurcation at which it
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was born becomes a local fold bifurcation, and at the two end points of the branch, Hopf bifurcations H2 to
two new T2 branches appear. All these complex dynamics take place in a narrow range of the imperfection
parameter (|ε|� 10−4), and the range of validity of the generic unfolding of the gluing bifurcation is severely
reduced.

An implication of the presence of nearby global dynamics interacting with the imperfect gluing bifurca-
tion is that the theoretical picture of the unfolding is completely changed. So, in an experiment with even
extremely small levels of imperfection, complex spatio-temporal dynamics can be present that are not ob-
viously associated with the underlying gluing bifurcation (e.g., in our example problem, for ε � 1.4×10−4

there is only one branch of T3, the T 3
b branch, that is not symmetric and does not undergo any homoclinic

bifurcation at this ε), and their origin would be difficult to reconcile. Although the dynamical systems the-
ory has proved to be extremely useful in providing plausible scenarios for many complex fluid problems,
in some cases the range of validity of the theoretical picture in the neighborhood of a bifurcation can be
extremely small, as was pointed out by Wittenberg and Holmes [30]. This is also the case in the present prob-
lem, where different complex bifurcations take place in a very small neighborhood of the gluing bifurcation,
and so finding any theoretical explanation of experimental results becomes very difficult.

The dynamics we have described in this paper are interesting in their own right as they offer detailed ex-
amples of complicated local and global bifurcations of T3. In particular, we have found that all the global
bifurcations that take place near the gluing bifurcation become local bifurcations when the imperfection
parameter increases. Although the minute details of the wealth of bifurcations we have found are almost
impossible to detect experimentally, some of the features can nevertheless be observed. In particular, T3

solutions are present in the whole parameter range we have examined. We expect, based on trends with
other features in Taylor–Couette flow, that in annuli with wider gaps and smaller aspect ratios, the global
bifurcations should occur over a more extensive range of Reynolds numbers. In fact, recent experimental in-
vestigations of unforced Taylor–Couette flow in annuli with height-to-gap ratios of order 10 have identified
the presence of an imperfect gluing bifurcation (von Stamm et al. [27], Abshagen et al. [2]), and the analysis
of the experimental results indicate that the dynamics associated with the gluing bifurcation are taking place
in an axisymmetric subspace.
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