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Abstract. The linear stability of the flow between concentric cylinders, with the inner cylinder rotating
at a constant angular velocity and the outer cylinder with an angular velocity varying harmonically about
a zero mean, is addressed. The bifurcations of the base state are analyzed using Floquet theory, paying
particular attention to non-axisymmetric bifurcations which are dominant in significant regions of param-
eter space. In these regions the spiral modes of the unforced system become parametrically excited and
dominant. This is typical behavior of parametrically forced extended systems, where some modes are sta-
bilized, but others are simultaneously excited. The flow structure of the bifurcated states are examined in
detail, paying particular attention to the dynamic implications of their symmetries, and in particular how
and when subsequent period doublings are inhibited.

1. Introduction

Temporally forced Taylor–Couette flow has been a paradigm problem for the parametric control of flow in-
stability by temporal forcing. There have been two fundamentally different ways that temporal forcing has
been imparted to the system. The first consists of harmonically modulated rotations of either the inner or
outer cylinder; we refer to this class of flows as modulated Taylor–Couette, MTC. The other class consists of
harmonic oscillations of the inner cylinder in the axial direction; oscillatory Taylor–Couette, OTC. The two
are shown schematically in Figure 1. Whereas OTC has always been found to be stabilizing (Hu and Kelly,
1995; Weisberg et al., 1997; Marques and Lopez, 1997, 2000), for MTC both experiments and theoretical
investigations (Donnelly et al., 1962; Donnelly, 1964; Carmi and Tustaniwskyj, 1981; Walsh et al., 1987;
Walsh and Donnelly, 1988; Barenghi and Jones, 1989; Murray, et al., 1990; Barenghi, 1991; Ganske et al.,
1994) have shown that under differing combinations of mean state and temporal forcing, the onset of insta-
bility may be enhanced or delayed compared with the unforced system. Regardless of the particulars of the
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Figure 1. Schematics of temporally forced Taylor–Couette; (a) outer cylinder oscillating azimuthally, MTC, and (b) inner cylinder
oscillating axially, OTC.

MTC problem, there has been overwhelming discussion in the literature concerning discrepancies between
experiments and stability analysis at the lower end of the range of forcing frequencies considered. A num-
ber of possible explanations have been put forward, e.g., nonlinear transitions due to low frequency forcing
allowing eigenmodes to grow beyond linear limit, and imperfections (Barenghi and Jones, 1989; Barenghi,
1991), but none of these has been systematically investigated and shown to be able to account for the dis-
crepancies. On the theoretical side, it is apparent that for most studies only axisymmetric disturbances have
been considered, and yet a number of experiments (Tennakoon et al., 1997) have observed the onset of in-
stability to non-axisymmetric modes in some parameter regimes. In contrast, the OTC problem has found
excellent agreement between experiments and theory (once the presence of endwalls are accounted for to
lowest order), including the onset of non-axisymmetric states when the forcing frequency is of the order of
the precession frequency of the spiral modes in the unforced system (Sinha and Smits, 2000). This motives
a re-examination of the MTC problem, allowing for non-axisymmetric perturbations.

Of any variants of MTC, in this paper we consider the linear stability of the flow between concentric
cylinders with the inner cylinder rotating at a constant angular velocity and the outer cylinder with an angu-
lar momentum which is sinusoidal about a zero mean. For this configuration, Donnelly’s group (Walsh and
Donnelly, 1988) found that the modulation of the outer cylinder delayed the onset of instability to higher
rotation rates of the inner cylinder compared with the zero-modulation case. Theoretical treatments of this
flow (Carmi and Tustaniwskyj, 1981; Barenghi and Jones, 1989; Murray et al., 1990) have been unable to
obtain reasonable agreement with the experiments in the low frequency large amplitude modulation regime.
Here, we present a Floquet analysis of the time-periodic basic state that considers axisymmetric and non-
axisymmetric perturbation modes, and allows for variable axial wave numbers; these two features have not
been considered in all previous studies. The non-axisymmetric perturbations lead to Neimark–Sacker bifur-
cations, Hopf bifurcations from limit cycles, and then the time integration for the monodromy matrix needs
to allow for quasiperiodic bifurcated states.

2. Implications of the Symmetries on the Dynamics

The symmetry group of the Taylor–Couette problem without periodic forcing is O(2) × SO(2) (e.g., see
Chossat and Iooss, 1994). O(2) consists of translations in the axial direction, where axial periodicity is
assumed, and the axial reflection R: z → −z. The SO(2) comes from rotations around the axis. In the period-
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ically forced case, the symmetry group is still O(2) × SO(2), but the physical realization of O(2) is different
in MTC and OTC; axial translations and rotations continue to be symmetries of both temporally forced sys-
tems. In the case of azimuthal oscillations, MTC, the governing equations are invariant with respect to the
axial reflection R, as in the unforced case. However, due to the axial oscillations in OTC, the axial reflec-
tion is no longer a symmetry of the problem, but composing it with a half-period time translation we obtain
a time-gliding symmetry G of the system. This symmetry, together with axial translations, still gives the
symmetry group O(2). The explicit expression of this symmetry, acting on the velocity field, is

(G(u, v, w))(r, θ, z, t)= (u, v,−w)(r, θ,−z, t + T/2) . (1)

The main difference between the MTC and OTC cases is that in MTC the R symmetry is purely spatial,
whereas in OTC it is a space–time symmetry. The implications of this is that the two basic states follow
different bifurcation scenarios.

The stability of the basic state is determined by Floquet analysis, where the Navier–Stokes equations are
linearized about the basic state, the linear system with a complete basis for general perturbations is evolved
for a forcing period, and the eigenvalues of the resulting monodromy matrix are examined. Change of sta-
bility occurs when one or more eigenvalues have unit modulus; this can occur in three generic ways. In the
first, the critical eigenvalue µ crosses the unit circle through +1, a synchronous bifurcation; in the second,
µ crosses through −1, a subharmonic bifurcation. The third way is for a pair of complex conjugate eigen-
values to cross, µ1,2 = e±iφ, a Neimark–Sacker bifurcation. The presence of the Z2 symmetry subgroups
generated by R and G may alter this generic scenario. In the case of MTC, the basic state limit cycle is in-
variant to a purely spatial Z2 symmetry, and the standard bifurcation theory (Kuznetsov, 1998) shows that
the bifurcation follows the generic scenario, and in particular period doublings (µ= −1) are allowed. In the
case of OTC, the presence of a space–time Z2 symmetry generated by G implies that the Poincaré map of
the basic state limit cycle is the square of another map, inhibiting period doubling via a simple eigenvalue
µ= −1 (Swift and Wiesenfeld, 1984; Marques and Lopez, 2000). In neither case are there restrictions on the
Neimark–Sacker bifurcation (µ= e±iφ). In fact, the breaking of the SO(2) azimuthal symmetry generically
gives a Neimark–Sacker bifurcation to a modulated rotating wave, where the precession frequency is given
by φ and the modulation comes from the temporally forced basic state. Note that Neimark–Sacker bifurca-
tions are inhibited in very low-dimensional systems (dim ≤ 3, see Kuznetsov (1998)), as is the case in the
two-dimensional Mathieu equation which has been the standard model used in parametric resonance studies
(clearly, the discretized Taylor–Couette problems are of large dimension).

3. Description of the MTC Case

We consider the flow between two concentric cylinders of infinite length, inner and outer radii ri and ro,
and gap d = ro −ri. The inner cylinder is rotating constantly, at Ωi rad/s, while the outer cylinder oscil-
lates about a zero mean atΩo = εΩi cosωt rad/s. The governing parameters are the inner Reynolds number,
Ri =Ωirid/ν, the radius ratio, η= ri/ro, the forcing amplitude ratio, ε, and the forcing frequency, ω, where
ν is the kinematic viscosity. The length scale used is the gap, d, and the diffusive time across the gap, d2/ν,
is the time scale.

The basic state is time periodic, the radial and axial velocity components are zero, and the azimuthal
velocity component depends only on (r, t). This azimuthal component vb is the sum of two terms, the well-
known Couette flow

vTC(r)= riro

r2
o −r2

i

(
ro

r
− r
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and a periodic component vp(r, t). The Navier–Stokes equations for vp = (εRi/η)Real(F(r)eiωt) reduce to
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F = 0, F(ri)= 0, F(ro)= 1. (3)
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The solution is a linear combination of the modified Bessel functions of order one, I1(y), K1(y), with com-
plex argument y = ω1/2reiπ/4 (Murray et al., 1990):

f(r)=
∣∣∣∣ I1(y) K1(y)
I1(yo)K1(yo)

∣∣∣∣
/ ∣∣∣∣ I1(yi) K1(yi)

I1(yo)K1(yo)

∣∣∣∣ , (4)

where yi and yo are the values of y at r = ri and ro, respectively.
The linear stability of the basic state is determined by Floquet analysis following Marques and Lopez

(1997). We perturb the basic state by a small disturbance which is assumed to vary periodically in the
azimuthal and axial directions:

v(r, θ, z, t)= vb(r, t)+ei(nθ+kz)u(r, t); (5)

the boundary conditions for u are homogeneous, u(ri)= u(ro)= 0. Linearizing the Navier–Stokes equations
about the basic solution, we obtain a linear system for the perturbation u with time-periodic coefficients.

The system is discretized in space using a Petrov–Galerkin scheme. The velocity field u is expanded in
a suitable solenoidal basis satisfying the boundary conditions,

u =
∑

j

ajuj, (6)

and the linearized equations are projected onto a different solenoidal basis ũj , satisfying the boundary condi-
tions. A comprehensive analysis of the method can be found in Moser et al. (1983) and Canuto et al. (1988).
After projection, the pressure term disappears, and we get a system of ordinary differential equations for the
coefficients aj :

Gẋ = H(t)x = (A+B sinωt +C cosωt)x, (7)

where the vector x contains the real and imaginary parts of the coefficients a (aj = x2 j−1 + ix2 j), and the ma-
trices A, B, C, G are time independent, with G positive definite (see Marques and Lopez (1997) for details).
A second-order implicit trapezoidal method is used for time integration, with a time step that depends on the
number of modes, the inner Reynolds number Ri, the modulation amplitude ε, and the modulation frequency
ω. The fundamental matrix of (7) is the solution of the system

GẊ = H(t)X, X(0)= I, (8)

where I is the identity matrix, whose columns form a basis of the disturbances x. Integrating over a forc-
ing period T = 2π/ω, we obtain the monodromy matrix of the system X(T ), whose eigenvalues µj , called
Floquet multipliers, control the growth rate of the perturbations.

The velocity field in the linearized problem depends on (θ, z) in a simple way, through the combination
nθ+kz. Therefore, the θ and z derivatives are proportional, ∂θ = (n/k)∂z . The incompressibility condition is

∂r(ru)+∂z

(n

k
v+rw

)
= 0. (9)

This allows the introduction of a generalized streamfunction ψ satisfying

∂zψ = −ru, ∂rψ = n

k
v+rw. (10)

Introducing the axial component of the angular momentum, γ = rv, as is usual in axisymmetric problems,
the velocity components are given in terms of ψ, γ as follows:

u = −1

r
∂zψ, v= 1

r
γ, w= 1

r
∂rψ− n

kr2 γ. (11)

Notice that in the axisymmetric case n = 0, ψ reduces to the Stokes streamfunction, contours of ψ in the
(r, z) plane are streamlines, and contours of γ are vortex lines. In the general case with n = 0, the (instanta-
neous) streamlines lay onψ isosurfaces, and these surfaces are invariant to the helical symmetries θ → θ+β,
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z → z −nβ/k for all β. Therefore, contours of ψ, γ in the (r, z) plane give a fairly complete description of
the flow also in the general case, and we present our results in this way.

A convenient expansion basis, inspired by (11), is given by

u2 j−1 = ( f j, 0, i∂r(r f j)/(kr)), u2 j = (0, gj,−ngj/(kr)). (12)

The boundary conditions for f j and gj , obtained from the homogeneous boundary conditions for uj , are
f j = f ′

j = gj = 0 at r = ri, ro. Introducing the new radial coordinate y = 2(r −ri)/d −1, y ∈ [−1,+1], and
using Chebyshev polynomials Tj , a simple choice for f j and gj , which satisfy the homogeneous boundary
conditions, is

f j(r)= (
1− y2)2

Tj−1(y), gj(r)=
(
1− y2)Tj−1(y), (13)

where j ∈ [1,M], and M is the number of Chebyshev polynomials used. In order to preserve the orthog-
onality relationships between the Chebyshev polynomials, and to avoid 1/r factors in the inner products
appearing in the matrices A, H, a suitable choice for the projection basis ũ is

f̃ j(r)= r3(1− y2)3/2
Tj−1(y), g̃j(r)= r3(1− y2)1/2

Tj−1(y), (14)

differing from the expansion basis u only in the factor r3(1− y2)−1/2. With this choice, most of the inner
products involve polynomials, and can be numerically computed exactly using Gauss–Chebyshev quadra-
ture; see Marques and Lopez (2000) for further details.

Functions f and g are associated with the generalized streamfunction and the azimuthal velocity, respec-
tively. The expressions of ψ, γ in term of f , g and the coefficients x of the velocity field expansion can be
obtained after some algebra, and are

ψ = −
M∑

j=1

(
x4 j−3(t) sin(nθ+kz)+ x4 j−2(t) cos(nθ+kz)

) r

k
f j(r), (15)

γ =
M∑

j=1

(
x4 j−1(t) cos(nθ+kz)− x4 j (t) sin(nθ+kz)

)
rgj(r). (16)

Convergence: The spectrum of the continuous system (M → ∞) has an accumulation point at µ= 0, and
only a finite (usually small) number of eigenvalues are far from zero and approach the unit circle in the com-
plex plane. We are interested in the most dangerous eigenvalue, with maximum modulus. When it crosses
the unit circle, the base state becomes unstable. This eigenvalue can be computed with great accuracy using
a small number of terms in the expansion (6). We have found that the critical Ri and k can be determined to
one part in ten thousand using M = 10 modes. If one were interested in additional eigenvalues, particularly
those close to the origin, a much larger number of modes should be used.

4. Results

We present results for three radius ratios, η= 0.88, 0.719 (considered previously by others), and 0.5; the
forcing amplitude ratio in all three cases is ε= 1.5, as in previous studies. Figure 2 summarizes the variation
of Ricrit and kcrit with ω. Comparing these values with the critical Ri and k in the unforced case (ε = 0, the
usual Taylor–Couette system), given in Table 1, two basic features emerge. First, the azimuthal modulation
produces a large stabilization, Ricrit in the MTC flow is 60–70% bigger than in the unforced case. Second,
the axial wave number is larger in the MTC flow than in the unforced case, with the effect more noticeable
for wide gaps (η= 0.719 and 0.5).

A characteristic of all the cases is that at the lower forcing frequency end (and what constitutes the low
end depends on η), there are large variations in the critical axial wave number. Note that many previous
theoretical studies only considered a fixed axial wave number. For axisymmetric disturbances, the largest
variations in k occur about theω for which the onset of instability switches between synchronous (µ= 1) and
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Figure 2. Variation of critical Ri and k with ω for η as indicated.

subharmonic (µ= −1). In the ω-region where this switch occurs, the critical Ri increases dramatically, indi-
cating a large stabilization of the system with respect to axisymmetric perturbations. This behavior is typical
of stabilization phenomena due to parametric resonance, as is often observed in systems modeled by Mathieu
and Hills equations. What is new to this system, and generic to other periodically forced extended systems, is
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Table 1. Critical Ri and k in the Taylor–Couette system (ε = 0, unforced) for the three values of η considered in this study, and
azimuthal wave numbers n = 0 (axisymmetric), 1, and 2.

Ricrit(ε = 0) kcrit(ε = 0)
η n = 0 n = 1 n = 2 n = 0 n = 1 n = 2

0.5 68.19 75.41 127.48 3.16 3.34 3.90
0.719 81.64 83.82 91.23 3.14 3.19 3.34
0.88 120.50 121.30 123.78 3.13 3.14 3.18

Table 2. Comparison between the central frequency in the Neimark–Sacker regions, ωNS, and the frequency in the unforced Taylor–
Couette system for the same η, n.

η nNS ωNS ωunforced

0.5 1 50±5 24.45
0.719 2 30±4 31.06
0.88 1, 2 19±1 8.14, 16.6

that although the periodic forcing stabilizes one of the system’s modes, other modes are excited. In particular,
for MTC, we find that the non-axisymmetric modes with low azimuthal wave numbers (n = 1 and 2) are the
first to become unstable in this range of ω. When the non-axisymmetric modes are excited, instability is via
a Neimark–Sacker bifurcation that introduces a new frequency corresponding to the precession frequency.
The bifurcated state is a modulated rotating wave, the modulation being due to the underlying axisymmetric
time-periodic state.

From Figure 2 we see that the above described phenomena occur at larger forcing frequencies and over
a wider range of ω for the wider gap case, η= 0.5. Furthermore, the critical Ri for successively larger azi-
muthal wave numbers, n, are more separated for the wider gap cases. Both of these trends with η suggest
that a wide gap should be more accessible to experimental and numerical investigations into the nonlinear
regime. With the smaller gap cases, the Neimark–Sacker curves have many strong resonance points, from
which complex dynamics can be expected in the nonlinear regime. Strong resonance points have also been
observed on the Neimark–Sacker curves in the OTC flow (Marques and Lopez, 2000).

Table 2 compares the central frequency in the Neimark–Sacker regions for the three radius ratios con-
sidered, with the critical frequency in the unforced Taylor–Couette system for the same radius ratio η,
corresponding to spiral modes with the same azimuthal wave number as the critical n in the Neimark–
Sacker region. These natural frequencies of the unforced spirals are in resonance with the forcing
frequency in the two cases with the larger gap, η = 0.5 and 0.719; the corresponding resonant ra-
tios are 1:2 and 1:1, respectively. In the narrow gap case η = 0.88, several non-axisymmetric bifur-
cations take place almost simultaneously, and the overall picture is not so clear, although the reso-
nant ratios are reasonably close to the mentioned ratios 1:2 and 1:1. This strongly suggests that in the
Neimark–Sacker bifurcation region, the spiral modes of the unforced system become parametrically ex-
cited and dominant. This is typical behavior of parametrically forced extended systems, where some
modes are stabilized (e.g., the axisymmetric modes), but others are simultaneously excited (the spiral
modes).

There are several codimension-2 points in the resonance regions where the switching between syn-
chronous and subharmonic bifurcations takes place and the non-axisymmetric Neimark–Sacker bifurcations
are the most dangerous. In generic two-parameter (e.g., Ri and ω) discrete-time systems (e.g., the Poincaré
map corresponding to strobing at the forcing period), there are 11 types of codimension-2 points that can
occur. Four of these have yet to be treated theoretically, and are present in this region (Kuznetsov, 1998).
These are:

1. µ1 = +1, µ2 = −1; the cusp point where n = 0 synchronous and subharmonic bifurcations occur simul-
taneously.

2. µ1 = +1, µ2,3 = e±iφ; where an n = 0 Neimark–Sacker and an n = 0 synchronous bifurcation occur
simultaneously.
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Figure 3. Instantaneous streamlines of the eigenfunction for η= 0.5, ω = 55, ε = 1.5, n = 0 at the times indicated, covering one
forcing period. The bifurcation is synchronous, µ= +1. Two axial periods are shown; the axial wavelength is λ= 2π/k ≈ 1.57.

3. µ1 = −1, µ2,3 = e±iφ; where an n = 0 Neimark–Sacker and an n = 0 subharmonic bifurcation occur
simultaneously.

4. µ1,2 = e±iφ, µ3,4 = e±iφ; where two n = 0 Neimark–Sacker bifurcations occur simultaneously.

Rich dynamics, including homoclinic behavior and chaos can be expected to originate in the neighborhood
of these codimension-2 points, as happens near the strong resonance points on the Neimark–Sacker curves
(e.g., see Kuznetsov, 1998).

The structures of the Floquet eigenmodes for the MTC problem are now described for the wide gap case
η= 0.5. In Figure 3, streamlines for the axisymmetric synchronous mode (n = 0, µ= 1) are plotted at eight
phases over one forcing period. The mode is similar to the Taylor vortex flow in an unforced system. How-
ever, over a part of the period, near the outer (modulated) sidewall, a series of cells counter-rotating to the
main Taylor cells appear for part of the period. These wall cells are due to the Stokes flow component of the
base flow on the temporally modulated sidewall. For this mode the outgoing jets remain radial and in place
during the whole period; the strength of the cells fluctuates with the modulation of the outer cylinder. These
synchronous modes only break the continuous translational symmetry in the axial direction of the base state,
replacing it with a discrete axial periodicity of wavelength 2π/kcrit, (z → z +2nπ/k), and flips at every half
axial period, at the points zn = (n + 1

2)π/k, (z → (2n +1)π/k− z). These are the same invariances of Taylor
vortex flow in the unforced system.

For the axisymmetric subharmonic case, the resulting flow is also a limit cycle, but with a period twice
that of the forcing. The spatial structure is quite distinct from that of the synchronous case (see Figure 4).
Although Taylor-like cells are still quite evident over part of the period, they change their sign of circula-
tion every forcing period, and the cells that are produced at the modulated sidewall penetrate further into
the interior, and there is a total cancellation of the meridional flow (evident at about t = 5T/8 and 13T/8 in
Figure 3), after which the Taylor cells re-established themselves, but with opposite circulation. This period-
doubled limit cycle solution has a different symmetry to that of the synchronous state. They both share the
same spatial symmetries as the Taylor vortex flow, but the subharmonic (period-doubling) bifurcation intro-
duces a new space–time symmetry not present in the synchronous case. The subharmonic mode is invariant
to an axial flip at every half axial period, at the points zn = nπ/k, (z → 2nπ/k − z), together with a half-
period translation in time (t → t +2π/ω); notice that the subharmonic mode has a period equal to twice the
forcing period, 2π/ω. This newly introduced symmetry is a space–time gliding symmetry G (see (1)), and
inhibits subsequent period doublings.

For the Neimark–Sacker bifurcation, the azimuthal SO(2) invariance is broken, introducing a second fre-
quency ωp measuring the precession frequency around the axis. The bifurcated mode retains the discrete
translational symmetry in the axial direction as in the synchronous and subharmonic cases, but the flip sym-
metry is broken (see Figure 5). We get two families of spiral solutions bifurcating simultaneously, one with
azimuthal wave number +n corresponding to a left-handed spiral, and the other one with azimuthal wave
number −n, corresponding to a right-handed spiral. Both precess in the same sense as the inner cylinder
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Figure 4. Instantaneous streamlines of the eigenfunction for η= 0.5, ω= 50, ε = 1.5, n = 0 at the times indicated, covering two
forcing periods. The bifurcation is subharmonic, µ= −1. Two axial periods are shown; the axial wavelength is λ= 2π/k ≈ 1.33.

Figure 5. Instantaneous streamlines of the eigenfunction for η= 0.5, ω = 50, ε = 1.5, n = 1 at the times indicated, covering one
forcing period. The eigenfunction corresponds to a Neimark–Sacker bifurcation, µ= e±iφ. Two axial periods are shown; the axial
wavelength is λ= 2π/k ≈ 1.49.

rotation, but much slower. The broken flip symmetry (z → −z) transforms one family into the other. The
bifurcated solution is generically quasiperiodic, although at specific points along the Neimark–Sacker bi-
furcation curve we can find strong resonances, when ωp/ω= p/q with q ≤ 4. From these points, resonant
horns emerge, and complex dynamics is expected in a neighborhood of the bifurcating point; see Arnold
et al. (1999) for the dynamical system theory, and Marques and Lopez (2000) for an analogous case in OTC.

Figure 6 shows horizontal (z-constant) sections of the flow, where the dynamics and interlocking of the
two spiral arms are depicted along a period of the forcing. The angular amplitude of the outer cylinder oscil-
lation is large, θampl = ε(1−η)Ri/(ηω) ≈ 3.7 rad (≈ 212o), producing large changes in the flow structure.
After a forcing period, we recover the same initial flow pattern, but rotated due to the precession frequency.
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Figure 6. Instantaneous streamlines of the eigenfunction for η= 0.5, ω = 50, ε = 1.5, n = 1 at the times indicated, covering one
forcing period. The eigenfunction corresponds to a Neimark–Sacker bifurcation, µ= e±iφ.

For this flow, ωp = 1.401, giving a rotation angle of ≈ 0.176 rad, or 10.1o per forcing period. For these non-
axisymmetric solutions a translation a on the axial direction is equivalent to a rotation φ in the azimuthal
direction. The relationship between these is given by φ/a = −k/n; this ratio is proportional to the spiral
pitch, k/(n(1−η)). All these geometric relationships are due to the helical symmetry of the bifurcated spiral
states.

5. Conclusions

We have re-examined a classical problem in Taylor–Couette, modulated Taylor–Couette, MTC, motivated
by recent work in axially oscillating Taylor–Couette, OTC, paying particular attention to non-axisymmetric
bifurcations which were shown to be dominant in significant regions of parameter space. These regions
are associated with the switch between the synchronous and subharmonic axisymmetric bifurcations. In the
Neimark–Sacker bifurcation region, the spiral modes of the unforced system become parametrically excited
and dominant. This is typical behavior of parametrically forced extended systems, where some modes are
stabilized, but other are simultaneously excited.

We have examined in detail the flow structure of the bifurcated states, emphasizing the dynamic impli-
cations of the symmetries of the basic and the bifurcated states, and in particular how and when subsequent
period doublings are inhibited.

The Floquet analysis has clearly identified that codimension-2 points are present in these regions of pa-
rameter space which have not been studied in detail theoretically. Therefore what one may expect in the
nonlinear regime near these points is an open question that warrants further investigation both numerically
and theoretically.
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