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Abstract. The dynamics of a small Prandtl number binary mixture in a laterally heated cavity is studied

numerically. By combining temporal integration, steady state solving and linear stability analysis of the

full PDE equations, we have been able to locate and characterize a codimension-three degenerate Takens-

Bogdanov point whose unfolding describes the dynamics of the system for a certain range of Rayleigh

numbers and separation ratios near S=-1.
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1. Introduction

Double-diffusive fluxes occur when convection is driven by thermal and concentration gradients, and the

temperature and concentration diffusivities take different values. This phenomenon has relevance for nu-

merous applications (Turner, 1985), and from a theoretical point of view presents very interesting dynamics,

including chaos (Cross and Hohenberg, 1993; Knobloch et al., 1986). We are interested here in the case

of horizontal gradients (Turner, 1980; Jiang et al., 1991). In this configuration, quiescent (conductive) so-

lutions can exist when thermal and solutal buoyancy forces exactly compensate each other. This occurs

only for a very particular value of the separation ratio (
�������

, see below), but has allowed for theoretical

analysis by studying the stability of the conductive solution (Ghorayeb and Mojtabi, 1997; Xin et al., 1997;

Bardan et al., 2000; Bergeon and Knobloch, 2002). In recent work, we addressed this case for a small

Prandtl number binary mixture, including only the Soret effect (Meca et al., 2004). Results showed a quite

interesting bifurcation scenario by varying the Rayleigh number. In particular, we found an orbit that is

born in a global saddle-loop bifurcation, becomes chaotic in a period doubling cascade, and disappears in a

blue sky catastrophe (Shilnikov, 1997). This orbit is the only stable solution in a large interval of Rayleigh

numbers. In this paper we analyze this system in greater depth to determine how the scenario associated to

the origin of this orbit is modified when the value of
�

is changed to larger (i.e. less negative) values. It is

relevant to assess to what extent the dynamics depends on tuned values of the parameters, or whether it is

fairly robust to these changes. Moreover, by varying a second parameter we gain access to a richer portrait

of the system, obtaining bifurcation lines and points of codimension two.

We have numerically integrated the full PDE equations in a region near
�������

, combining steady state

solving, numerical continuation, linear stability analysis, and temporal integration. The results show that

distinct bifurcations of the
�������

case (namely two saddle nodes and a global saddle loop) approach each

other in the region near
���	��

� �

until only a Hopf bifurcation remains, in a scenario consistent with the

unfolding of a codimension-three degenerate Takens-Bogdanov point.

The outline of this paper is as follows. In Section 2 we detail the model and the numerical procedure. In

Section 3 the behavior of the system for
�������

is reviewed. In Section 4 we extend these results by letting
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both ��� and
�

vary. Finally, the discussion of the results and some concluding remarks are presented in

Section 5.

2. Basic equations and numerical methods

We consider the 2-D flux of a binary mixture in a rectangular cavity � of length � and height � . The

aspect ratio � � ���	� has been chosen to be 
 . The cavity is laterally heated, maintaining different constant

temperatures at the opposed vertical boundaries. �
� is the difference between both temperatures. On the

horizontal boundaries, a linear temperature profile is imposed. All the boundaries are taken to be no-slip and

with no mass flux. In these conditions the dimensionless equations in Boussinesq approximation explicitly

read

������������������� � � � �!�#"$� %��
�&" ���(' � � � � �$� ��
 � ) �+* �,� �$�+-.� �0/.1�2354

� � -.�6�7���8� ��- � �:9<; �<� �#� % - 4 (1)

� � / �6�7�=����� / � �:9<; �<� �?> � % �@- �A/ � 4
�B�8� � 

�

In these equations lengths, times and temperatures are scaled with � , CED � � % �<F and �
� , respectively, F
being the thermal diffusivity.

�HGI� 9<; 4 9<J � is the (dimensionless) velocity field in
�@* 4EK � coordinates,

�
is

the pressure over the density,
-

and
/

are deviations from a linear horizontal profile of the temperature and

of the rescaled concentration of the heavier component, respectively. The dimensionless parameters are the

Prandtl number
" �6L �<F , the Rayleigh number ��� ��M$N �PO8�
�Q� L F and the Lewis number

> ��R �<F , where

L
denotes the kinematic viscosity,

N
the gravity level,

M
the thermal expansion coefficient, and

R
is the

mass diffusivity. The separation ratio is defined by
����/TS � � ��/US �,VW �YX

, where
�YX

is the Soret coefficient,

/ S
is the actual value of the concentration of the heavier component in the homogeneous mixture, and Z

is the mass expansion coefficient (positive for the heavier component). Finally, boundary conditions are

written as

� � - �6[ �8�\� / � -�� � 
 4 at
� � � (2)
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These boundary conditions are not compatible with the transformation of the Soret equations into those used

by Ghorayeb and Mojtabi (1997); Xin et al. (1997); Bardan et al. (2000); Bergeon and Knobloch (2002).

Note also that Eqs. (1) together with boundary conditions (2), are invariant under a rotation � around the

point
� �T�	
 4 � �<
 � as

�@* 4EK ��� � � � * 4 � � K � 4 � 9 ; 4 9 J 4 - 4 / ��� � �:9 ; 4 �:9 J 4 � - 4 � / � . Therefore the system is

� % -equivariant (Kuznetsov, 1998). From now on solutions invariant (non-invariant) under � will be called

symmetric (non-symmetric).

Eqs. (1) and boundary conditions (2) have been solved by a second order time-splitting algorithm,

proposed by Hugues and Randriamampianina (1998), applied to a pseudo-spectral Chebyshev method. To

calculate steady solutions, we have adapted a pseudoespectral first-order time-stepping formulation to carry

out Newton’s method, as described by Mamun and Tuckerman (1995); Bergeon et al. (1998); Xin and Le

Quéré (2001). In the preconditioned version of Newton’s iteration, the corresponding linear system is solved

by an iterative technique using a GMRES package (Frayssé et al., 2003). The linear stability analysis of

the steady states is conducted by computing the leading eigenvalues of the Jacobian by means of Arnoldi’s

method, using routines from the ARPACK package. For numerical calculations the chosen parameters have

been Prandtl number
" � 

� 
 
�� � )

and Lewis number
> � 

� 
��

. The system has been discretized in space

by using
� 
	��

� and

� 
 ��� 
 mesh points in steady calculations, giving both resolutions equivalent results.

For example, increasing the resolution, the Rayleigh number of the turning points varies less than a


� ���

Temporal integration was used basically to follow orbits with very long periods, and in particular in regimes

with divergent periods where a fit of the divergence itself was needed. Thus, much more computation time

was required. A mesh grid of � 
 � � 
 points has proved to be sufficient to obtain results that did agree

fairly well with steady calculations in the cases where the comparison applied.

3. Scenario for �������

In this section we summarize the behavior of the system for a separation ratio
�������

(Meca et al., 2004).

The bifurcations diagram of the steady solutions is shown in Fig. 1. In this figure, the Nusselt number ��� ,

defined as the ratio of the heat flux through the hot wall to that of the corresponding conductive solution, is
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Figure 1. Stationary solutions diagram for ������� varying �	� , as obtained by Meca et al. (2004). Continuous lines: stable states.

dashed lines: unstable states.

represented as a function of the Rayleigh number ��� . For the sake of clarity, only one of the non-symmetric

solutions related by � is represented. For this value of
�

the conductive solution is allowed. For small

��� this solution is stable, but loses stability at ��� � ) 
 � � � through a transcritical bifurcation ( ��
 ). The

resulting solutions are symmetric by the rotation � , and are characterized by a central main roll accompanied

by secondary ones in opposed corners. The supercritical branch is stable only until ��� �B) 
 
 � 
 , where a

small non-symmetric branch connects it to the conductive solutions through pitchfork bifurcations, a case

analogous to that reported by Bardan et al. (2000). We center the discussion here on the solutions originating

from the subcritical branch. This solution is stabilized by a saddle node bifurcation at ��� � � � (
� � 
 )

and loses stability again in a Pitchfork bifurcation at ��� � 
 
 ) (
�

), where a stable non-symmetric branch

appears. In Fig. 2 (left) we see that the breaking of the symmetry confines the main roll to one lateral

side. Continuing the symmetric branch, a supercritical Hopf bifurcation at ��� � 
 � ��� ( �

 ) (maintaining

symmetry) is found. At ��� � 
	
 ) � the bifurcating periodic solution gains stability in a Pitchfork bifurcation.
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Figure 2. Non symmetric steady solution for ������� . Left: Stream lines for the stable solution at �	�
���
�
� . Right: Detail of the

non-symmetric branch in the region of the two turning points, indicating the sign of the real part of the leading eigenvalues. The open

circle denotes a global saddle-loop bifurcation.

Furthermore, the steady non-symmetrical solution undergoes a saddle-node bifurcation at �������������
( ����� ) and has a saddle-saddle turning point at �����! #"#$&% " ( '
( ). Further along this branch, a Hopf

bifurcation can be found at ���)�����*�� ( +�� ). A detail of this branch in the region of the two turning points

is represented in Fig. 2 (right). Here, the variable ,�- , related with the kinetic energy and defined as

,.-/� �0
1325476
2�498

1;:<4>=
:<498@?BA ?/C�DEC#FHG (3)

is plotted versus the Rayleigh number ��� . In this figure we have also included the sign of the real part of

the leading eigenvalues; a parenthesis is used to indicate a complex conjugated pair. Between both turning

points an homoclinic saddle loop connection at ���I�J�#�5 LK ( ��M ) gives birth to a periodic non-symmetric

solution (Meca et al., 2004). This orbit, which is the only stable solution in a wide range of values of the

Rayleigh number ��� , is characterized by very long periods and a spiking behavior. In particular at the �BM
connection its period diverges logarithmically as expected.

When the Rayleigh number is increased, a very interesting complex behavior of this orbit arises (Meca

et al., 2004). Firstly, at ���)���*�5N*O the orbit starts to show ripples, reflecting the frequency corresponding

to the Hopf bifurcation + = , while the period increases dramatically. In the region near �����P����N#$ the orbit

undergoes a period doubling cascade, becoming chaotic. At ���Q�@�#��$ROS%T$ the chaotic attractor disappears
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in a blue sky catastrophe, in a scenario similar to that proposed by Shilnikov and Turaev (2000) in which

both length and period of an orbit diverge at the bifurcation point.

4. Results for ��� ���

We have performed both steady state and temporally dependent calculations of the system for different

values of
�

above
���

. We have centered our research on the solutions from which the non-symmetric orbit

is born in a global saddle loop (SL) connection. Namely, we are referring to the non-symmetric branch

with two successive turning points (
� � % and � � ), between which the SL connection is found. This is the

situation represented in Fig. 2 (right) for
���	���

.

This configuration of bifurcations changes when
�

is increased. The sequence of events in this region is

quite complex, but the final situation is simple. Remarkably, for values around
� ����
 � � � 
 
 only a Hopf

bifurcation remains. To analyze this process we present in Fig. 3 results for this branch and different
�

values.

In this figure, branches and local bifurcations are found by continuing steady solutions and performing linear

stability analysis, whereas global bifurcations are located by temporal integration. To do this, we fix a value

of S, and starting from a periodic solution as initial condition, we vary slightly the Rayleigh number while

monitoring the value of the period of the final stable orbit. Then, the connection is located at the point

where the period diverges.

The first qualitative change occurs between
� �	���

and
��

� �

, where the global connection SL moves

toward the saddle node
� � % , becoming a SNIC (saddle node on an invariant circle) in a saddle node

loop (SNL) codimension-two bifurcation. This change is manifested in the law of divergence of the period

� found by temporal integration of the bifurcating orbit for ��� toward the homoclinic connection. The

divergence for the SL is logarithmic, � ��� �

��� �
�
�	��

� � ��� � ����� � ��� 4 (4)

where ����� is the value for which the global connection takes place and
�

is the eigenvalue of the jacobian

matrix associated to the unstable direction of the hyperbolic solution. The divergence changes to square
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Figure 3. Detail of the bifurcations diagram for several values of ������� . Kinetic energy is represented versus �	� . Full circles denote

Hopf bifurcations. Global bifurcations (either SL or SNIC) are represented by open circles.

root for the SNIC:


�� 
� ����������������� (5)

Here,
��� �

corresponds to the position of the saddle node. Furthermore, as we increase � , the point at

which the two positive eigenvalues merge to become a pair of conjugated complex values (see Fig. 2 right)

approaches the turning point (

��

) until a Takens-Bogdanov (TB) codimension-two bifurcation occurs there

for � near
�! � "$#%#  . In Fig 3 we see the branch for �'& �! � "$#�( , for which the


 
 has unfolded to a Hopf

bifurcation and a global saddle loop connection, which constitute the birth and the end of an orbit that has

been calculated by temporal integration. The divergence of the period of this orbit at the saddle loop is

again logarithmic, as in Eq. 4. Therefore for this value of � we obtain both divergences, logarithmic for

the SL and square root for the SNIC. We have performed fits of the periods for both points. Indeed, the

)
value obtained by the fit,

)+*-,/. &  �  10 (32 , agrees fairly well with the eigenvalue obtained by the stability

calculation of the steady state (
) &  �  4065%5 ). For the SNIC,

��� �-798+:<;>= & "%? 5 � 5A@ , and the value of ��BDC is
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Figure 4. Periods of the homoclinic orbits found at � � ����� ������� near their corresponding SL, together with the corresponding

logarithmic fits. Left: divergence located at �	� ����	�
�� ��	�
 ; Right: divergence located at �	� ����	�	�� 	���	

����� � � ) � � � � . In this situation the eigenvalue that became positive at
� � % gains stability at � � . At the

Hopf bifurcation the solution loses stability again.

When
�

is slightly increased, an additional codimension-two SNL bifurcation is found at
� � % , the

SNIC becoming an SL moving away from the saddle node. At this moment, both SL are approaching each

other, a situation represented in the branch
� � ��
 � � � ��� in Fig. 3. The divergences of the periods of the

corresponding homoclinic orbits are shown in Fig. 4. They are both logarithmic, with fitted values for the

eigenvalues being
����� � � 

� 
 
 � ��� and



� 

� � � , according well with the steady calculations
� � 
 � 
 
 � 
 
 and



� 

� � 
 , respectively.

Very soon afterwards they touch each other and disappear. By
������

� � � 
 no global connection remains

in this branch. It is now possible for the two turning points (
� � % and � � ) to annihilate each other in a

codimension-two cusp bifurcation. That occurs for
��� ��

� � � 
 � . The final situation, in which only the

Hopf bifurcation is found, is represented by the
������
 � � � 
 branch of Fig. 3.

5. Discussion and concluding remarks

In the preceding section we have numerically studied the change of an interesting branch of non-symmetric

solutions when a second parameter (the separation ratio
�

) is varied. The scenario that emerges from these

results consists of a series of codimension-two bifurcations arranged to enable two destabilizing saddle
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Figure 5. Bifurcation lines in the � ��� �	��� parameter space (see text).

nodes of a branch connected to an orbit by a global bifurcation to disappear, resulting in a simpler situation

with only a local Hopf bifurcation.

These results can be summarized by drawing bifurcation lines and codimension-two points in an
� � 4 ��� �

plot. This is shown in Fig. 5. In this figure the two turning point lines meet in a cusp bifurcation at

������
 � � � 
 � . We can track the larger eigenvalues of the system along these lines. We find that at
������
 � � � � 


the solution on the line � � has a double zero eigenvalue. This indicates the presence of a Takens-Bogdanov

(TB) codimension-two point. Indeed, this can also be checked by noting that, by performing linear stability

analysis, a branch of Hopf bifurcations, with very low frequency starting from zero, also begins at this

point. It should be stressed that in order for both turning points to be effectively annihilated � � should

become stabilizing. That happens at the TB point.

The existence of a TB bifurcation also implies the existence of a branch of homoclinic connections

(saddle-loop). This is, in fact, one of the few analytical methods of proving the existence of a homoclinic

orbit. We have used the time evolution code to situate the line of homoclinic connections as detailed in Sec.

4, and checked if the period of the orbit diverges following the logarithmic law (Eq. 4). Indeed the values
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found for
����� �

did agree well with the eigenvalues calculated from the stability of the steady solutions. The

fitting of the value of ����� yields the points marked in Fig. 5. We see that the line that joins these points is

connected with the saddle-node line corresponding to the
� � % points. This connection is

� ��� 
 (located

very close to
������
 � � � � ), one of the saddle-node separatrix-loop points (Schecter, 1987) mentioned above.

It is at this point that the branch of homoclinic connections merges with the saddle-node line to become

an SNIC line. This is confirmed by the change of the logarithmic law for the divergence of the period (Eq.

4) to the square root of Eq. 5.

If we keep following the SNIC line toward more negative separation ratios, we find the other codimension-

two saddle-node separatrix loop point (
� ��� % , at

� � ��

� � 
 , not shown in Fig. 5) where the SNIC line

ends, giving birth again to a homoclinic bifurcations line separated from the saddle-node line. Following

this line until S=-1 we recover the
�
� point at � � ��� � � 
 .

This particular configuration of codimension-two bifurcations is very far from being peculiar of this

problem. It is found in many other areas, such as bursting oscillations in neural or biological systems

(de Vries, 1996; Borisuk, 1997), population dynamics (Bazykin, 1985), laser dynamics (Mayol et al., 2002),

and some diffusively coupled systems (Kanamami and Sekine, 2003). Theoretically, all this behavior can be

reproduced as a 2-dimensional slice in parameter space of the unfolding of a codimension-three degenerate

Takens-Bogdanov point (Dumortier et al., 1991), also known as the Dumortier-Roussarie-Sotomayor (DRS)

bifurcation. In particular, we are referring to the focus case described by Dumortier et al. (1991). This

is also consistent with the fact that the presence of the SNIC cannot be related to a local codimension-2

phenomenon (Golubistky et al., 2001).

The scenario in which the DRS bifurcation appears can be described by a planar vector field (Dumortier

et al., 1991), i.e. it is essentially two-dimensional. This suggests the possibility of calculating the normal

form coefficients of the bifurcation from the PDE’s, which is an interesting problem from a theoretical point

of view.
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