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Abstract. This work is devoted to the study of transient growth of perturbations in the Taylor—Couette
problem due to linear nonnormal mechanisms. The study is carried out for a particular small gap case and
is mostly focused on the linearly stable regime of counter-rotation. The exploration covers a wide range of
inner and outer angular speeds as well as axial and azimuthal modes. Significant transient growth is found
in the regime of stable counter-rotation. The numerical results are in agreement with former analyses based
on energy methods and other independent numerical studies. The optimal energy transient growth factor
appears to be consistent with experimental observations. This study might shed some light on the subcriti-
cal transition to turbulence which is found experimentally in Taylor—Couette flow when the cylinders rotate
in opposite directions.

1. Introduction

Taylor—Couette flow of a viscous fluid confined between independently rotating coaxial cylinders has been
one of the most studied problems of fluid dynamics in the last 80 years. Starting with the celebrated work
of Taylor (1923), the Taylor—Couette problem has been an experimental, theoretical and numerical bench-
mark problem for bifurcation theory and hydrodynamic stability. This flow may become turbulent by means
of many different mechanisms which usually involve successive steady or unsteady linear instabilities. The
flow may exhibit many different steady, time periodic or almost periodic patterns before an eventual tran-
sition to chaotic regimes (Andereck et al., 1986; DiPrima and Swinney, 1981). We refer the reader to the
standard monographs by Chossat and Iooss (1991) or Tagg (1994) for details. Below the critical values
predicted by linear stability theory, azimuthal Couette flow is stable with respect to infinitesimal perturba-
tions. Nevertheless, experiments formerly carried out by Coles (1965) and Van Atta (1966), and later by
Hegseth et al. (1989), reported striking new phenomena of sudden transition to spiral turbulence in the re-
gion where the linear theory predicted stability of the basic azimuthal Couette flow. This kind of instability,
which Coles termed catastrophic transition, cannot be explained by means of eigenvalue analysis of the
linearized Navier—Stokes operator. Instead, this subcritical transition may be associated with the consider-
able amplification or transient growth that even very small amplitude perturbations may suffer due to the
nonnormality of the linearized operator, i.e., nonorthogonality of its eigenvectors (Kato, 1976). It has long
been known that nonnormality of linearized operators of pipe (Boberg and Brosa, 1988), plane Poiseuille
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(Gustavsson, 1991) or plane Couette flows (Butler and Farrell, 1992) is responsible for the considerable non-
modal linear growth of small perturbations. Plane Couette or pipe Poiseuille flows are linearly stable for all
Reynolds numbers (Romanov, 1973; Drazin and Reid, 1981) although they actually become turbulent due
to finite amplitude perturbations which are transiently amplified by nonnormal mechanisms. The question
regarding the role of nonnormality in subcritical transition of shear flows has generated many controversies
during the past decade (Trefethen ef al., 1993; Waleffe, 1995), Reddy and Henningson (1993) being the first
attempt at clarification. A comprehensive theoretical study of nonmodal analysis for this type of flows can
be found in the recently published monograph by Schmid and Henningson (2001).

In Hristova et al. (2001) a first nonmodal analysis of the linearized Taylor—Couette problem has been
provided for axisymmetric perturbations with fixed axial periodicity. Although the nonnormality of the
Taylor—Couette problem was first pointed out in Gebhardt and Grossmann (1993), this feature has been
studied in et al. (2001) by means of the computation of the pseudospectra of the linear operator (Trefethen,
1999). The exploration in et al. (2001) was carried out for different values of the radius ratio of the cylin-
ders and for a fixed angular speed ratio so that the average angular speed eliminates the Coriolis effect in
the narrow-gap limit. Their purpose was to recover the plane Couette behaviour as a narrow gap limit of the
Taylor—Couette problem. One of the motivations of this research is the remarkable similarities of the spi-
ral turbulent patterns between plane Couette and narrow-gap Taylor—Couette flow which have been recently
reported by Prigent and Dauchot (2001).

The experiments of Coles and Van Atta were carried out with a narrow-gap apparatus and subcritical tran-
sition to turbulence was found in the regime of counter-rotation or when the inner cylinder was at rest. The
purpose of this work is to examine the transient energy growth of perturbations based on the linear nonmodal
analysis of the azimuthal Couette flow under those circumstances. The author does not claim that this mech-
anism is the only one responsible for the eventual transition to turbulence; nonlinear effects are also crucial
for that transition.

The paper is structured as follows. In Section 2 we formulate the stability problem and we define the
quantities which measure the transient growth of the perturbations. In Section 3 we provide a comprehen-
sive exploration of the optimal transient growth in the counter-rotation regime for different azimuthal and
axial modes, and we compare our numerical results with the experimental data available, former theoretical
works based on energy methods and with a former nonmodal linear growth analysis.

2. Mathematical Formulation: Linear Stability and Energy Norm

We consider an incompressible fluid of kinematic viscosity v and density p which is contained between two
concentric rotating cylinders whose inner and outer radii and angular velocities are r{", r¥ and £2;, §2,, respec-
tively. Henceforth, all variables will be rendered dimensionless using d = rj — ¥, d?/v, v*/d? as units for
space, time and the reduced pressure (p/ p), respectively. The independent dimensionless parameters appear-
ing in this problem are the radius ratio n = r;*/r} which fixes the geometry of the annulus, and the Couette
flow Reynolds numbers Ri = dri$2;/v and Ro = dr,S§2, /v of the rotating cylinders. The Navier—Stokes equa-
tion and the incompressibility condition for this scaling take the form

v+ (v-V)v=—-Vp+ Ay, V-v=0. (D)

Let v=v,e.+vgeg+ v, e, = (v, vg, v;) be the velocity vector v in cylindrical coordinates (r, 6, z). The
basic azimuthal Couette flow vB = (v?, vg, v?) is obtained by assuming independence with respect to ¢, 6
and z:

B
B =0, v]g’zAr—i-—, v?:O (ri<r<rp), 2)
, .

where A = (Ro—nRi)/(1+n), B=n(Ri —nRo)/(1 =) (1 —=n*), ri =n/(1 —n) and ro = 1/(1 —n).
For our analysis, the basic flow is perturbed by a small disturbance which is assumed to be periodic in the
azimuthal and axial coordinates:

v(r, 0,2, 1) = VB u(p) TR, (3)
p(r’ 9’ zZ, t) — pB +q(r) el(ﬂé)-’rkz)-f‘)»t’ (4)
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where n € Z, k € R and A € C. In addition, the perturbation of the velocity field, u = (u,, ug, u;), must vanish
at the radial boundaries

u(ri) =u(ro) =0, ®)
and satisfy the solenoidal condition
V- [e TR g )] = 0. (6)

By introducing the perturbed fields (3) and (4) in the Navier—Stokes equations (1) and neglecting nonlinear
terms, we obtain the solenoidal eigenvalue problem for the (n, k) azimuthal-axial mode of the perturbation

- 2 . .
n“+1 in 2 2in
)\,ur:—Dq—|— D+D— 5 —kz——veBi|ur+|:—Ug——2i|ue, (7)
L r r r r
. 2 . .
in n“+1 5, in g 2in B
)\,uez —7q—|—|:D+D— r2 —k —7U6i|l/lé)+|:r_2_(D+vg) Ur, (8)
. [ n* , ing
Iy = —ikg+|DyD—— —k* = —vf | u; €))
L r r
in .
Dyu, = — —up —iku, , (10)
r

where D=d/dr and Dy =D+ 1/r.

For a fixed (n, k)-mode, we discretize the boundary value problem (5)—(10) by a solenoidal Petrov—
Galerkin spectral method described in Canuto et al. (1988), p. 228, whose accuracy was confirmed in
Meseguer and Marques (2000) for the stability analysis of the spiral Couette flow. The discretization scheme
leads to an eigenvalue problem for the amplitudes a = (ao, ... , am)T of the spectral representation of the
velocity field:

L(Ri, Ro, n, n, k)a= \Aa, (11

where the matrix IL implicitly depends on the set of parameters of the boundary value problem. The linear
stability problem is then reduced to the computation of the spectrum of LL for each pair of (n, k) azimuthal—
axial modes. If, for a fixed set of values Ri, Ro and 7, the (n, k)-spectra always lie in the left-hand side of
the complex plane, then the basic flow will be stable with respect to infinitesimal perturbations. On the other
hand, if one of the eigenvalues has positive real part, then the basic Couette flow will be linearly unstable.
We focus our attention in the transient evolution of perturbations in the regime of linear stability, fol-
lowing the same methodology used in Schmid and Henningson (1994) for the study of nonnormal transient
growth in Hagen—Poiseuille flow. For a given (n, k) azimuthal-axial mode, consider the linear subspace Sy
spanned by the eigenvectors of the N rightmost eigenvalues {A1, A2, ... , Ax} of the spectrum of L,

SN={(q1.q2, ... ,qn). (12)

Any perturbation q € Sy can be expressed as a linear combination of the eigenvectors q;,

N
q=)_ Knln = (1,62, ..., kn)T, (13)
n=1

and its time evolution is dictated by the diagonal system

= _ 4 (14)
— = Ak,
dr

where we have assumed that we have distinct eigenvalues and eigenvectors and where k = (k1, k2, ... , kK N)T

and A =diag{A1, A2, ..., An}. We define the energy norm of the perturbation q by means of the inner
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product

To

1
e(qQ) =(q, Qg = E/q* -qrdr, (15)

n

where * stands for complex conjugation. We consider the matrix of inner products between the eigenvectors
M = (@i, G;)E- (16)

This matrix is positive definite and it admits a decomposition of the form M = FIF, where t stands for the
complex conjugate transpose. This decomposition can be accomplished by means of the standard QR fac-
torization. The energy norm of the perturbation q in (15) can be expressed in the standard 2-norm in Sy by
means of the components F and Ft:

e(q) = k Mk = (Fk, Fr), = (k, K)E = ||K|[% = |[F&|[3.

We are interested in the measurement of the energy growth of an initial condition k¢ as a function of time.
Following Boberg and Brosa (1988), we define the energy amplification factor, g(t), as the ratio between the
energy norm of the perturbation at time ¢ and its initial norm,

oty = IROIE _ e ol

- 2 T 2
|1Kollg |1Kollg

(17)

For a fixed time 7, we want to maximize g(f) in (17) over the set of all possible initial conditions «p. Maxi-
mization of the ratio appearing in (17) leads to the quantity G (¢), the optimal energy amplification factor:

2
lleYkollg |IFe?! kol 13

= — —E_ T 2 |IFeMFT2. (18)
lImollZ0 [|moll%  limoll#0 ||Froll3 :

Gt = mﬁ; Og(t)

[0

The quantity ||F eF~!|| is the principal singular value o of the operator Fe//F~! and its computation is
straightforward via standard methods,

G() =of(FeMFH). (19)

This is equivalent to solving the variational problem of maximizing the factor g(¢) for a prescribed time ¢
and considering the initial conditions as the degrees of freedom of the problem (Butler and Farrell 1992).
The optimal growth G(¢) in (19) has been obtained from the linear operator A associated with the (n, k)
azimuthal-axial mode and for a prescribed positive time . Therefore, for a fixed set of values Ri, Ro and
n, the maximum energy amplification factor, G may, 18 obtained by maximizing G (#) in (19) for all the pairs
(n,k) € ZxRand fort € RT:

Gmax(Ri, Ro, n) = sup G(2). (20)
(n,k,1)

3. Parametric Study of G ,ax

In this section we describe the global features of the growth factor G, defined in (20). The exploration
is carried out for the particular case n = 0.881 and for inner and outer Reynolds numbers in the domain
(Ri, Ro) € [0, 900] x [—4000, 500], following the specifications of the experimental study provided in Coles
(1965). Our attention is mainly focused in the counter-rotating regime, where the flow exhibited subcritical
transitions in the laboratory. Nevertheless, for completeness we enhanced our exploration to a small region in
the co-rotating regime. We take advantage of the O(2)-symmetry of the problem, i.e., invariance of the sys-
tem (5)—(10) under axial translations and axial reflections of the form {z - —z, w — —w}, with respect to
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orthogonal planes to the common axis of the cylinders. The system also has SO(2)-symmetry, i.e., invariance
with respect to azimuthal rotations around the centre axis (Chossat and Iooss, 1991). Therefore, we have re-
stricted our computations to the case when both n and & are positive or zero. In this particular study, we have
maximized the factor G in (19) for positive times, for azimuthal modes in the range 0 <n < 15 and for axial
wave numbers in the range 0 < k < 10.

In order to validate our numerical results, we have carried out an analysis of the transient growth for ax-
isymmetric disturbances with a fixed axial periodicity. This has been done in order to compare our numerics
with the results provided in Hristova et al. (2001). In the study carried out by Hristova et al., the distances
were nondimensionalized by the length scale d/2 and the angular speed ratio was fixed at u = £2,/2; = —1.
For this particular case, the Reynolds number Re used in Hristova ef al. (2001) and our inner and outer
Reynolds numbers Ri and Ro are related by

Ri =2Re, Ro = —%Re. (21)
By the same rule, the axial wave number § used in Hristova et al. (2001) is related to ours by a factor of two,
i.e., k = 2. In Figure 1(a), we have represented the transient growth factor for Ri = 240, Ro = —272.42,
n =0 and k = 7, corresponding to the values Re = 120 and 8 = 7/2 in Hristova et al. The maximum tran-
sient growth in this case is Gpax ~ 16.62, being in very good agreement with Figure 2 of Hristova et al.
(2001). Nevertheless, the circular Couette flow is linearly unstable in that case for non-axisymmetric per-
turbations, as seen in Figure 1(b) for n = 1. In Figure 1(b), we observe a very similar transient growth
which attains a slightly higher maximum value of Gyax & 16.66, although the basic flow eventually ex-
hibits an exponential instability. This justifies a wider study of the transient growth for non-axisymmetric
perturbations.

The results of our exploration are summarized in Figure 2. The shaded zone represents the region of
the (Ro, Ri)-plane where the circular Couette flow is linearly unstable with respect to axisymmetric or
non-axisymmetric perturbations, i.e., Gpax — 00. This region has a lower boundary which is the criti-
cal curve where the first linear instability appears. This critical curve has been computed by solving the
eigenvalue problem (11) and imposing the condition that the real part of the rightmost eigenvalue of L be
zero. Below the critical boundary prescribed by the modal analysis, the figure shows contours of the func-
tion Gmax(Ro, Ri). Different features can be pointed out. First, at the bottom right of Figure 2 we have
represented the rigid rotation curve, Ri = nRo, by a dashed line representing the region where both cylin-
ders rotate with the same angular speeds, £2; = §2,. We can observe that, close to that region, the Couette
flow does not exhibit transient growth. This is clearly visualized in the figure by a narrow stripe contain-
ing the rigid rotation curve within which Gpax = 1. This result is in agreement with previous analyses
based on energy methods which concluded that near the rigid rotation region, circular Couette flow is abso-
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Figure 1. Comparison with simultaneous work (Hristova et al., 2001): (a) Transient growth factor G(f) for n = 0.881, Ri = 240,
Ro=—-272.42, n =0 and k = &, following Hristova et al. for Re = 120 and 8 = /2. (b) Same computation for n = 1.
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Figure 2. Maximum transient growth factor Gpax in the (Ro, Ri)-plane. The dashed line represents the rigid body rotation curve
Ri =nRo. The lines with white triangles represent the experimental boundaries of transition to turbulence provided in Coles (1965).
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Table 1. Parameters for optimal transient growth at the experimental transition points reported by Coles in the upper branch of
Figure 2.

Ri Ro n k G max
591 —2588 10 1.994 71.36
523 —2975 11 1.996 71.58
473 —3213 11 1.920 71.64
405 -3510 11 1.839 71.75

lutely, monotonically and globally stable (Joseph, 1976). Second, in the counter-rotation region, we observe
a monotonic growth of Gpax, which ranges between 1 and 100. This would imply that the energy of any
small perturbation would be transiently amplified by almost two orders of magnitude in the counter-rotation
region explored in this case. Third, the contours of G,y are not tangent to the shaded region over the lin-
ear instability boundary. In fact, the intersection is transversal, implying that nonmodal transient growth may
still be found slightly above the linear critical values, as reflected in Figure 1(b). Finally, Figure 2 includes
the experimental data from Coles (1965). The lines with white triangles represent the experimental bound-
aries of transition to spiral turbulence reported by Coles above which subcritical transition was found. The
two boundaries correspond to two independent experiments carried out with different fluids. In Coles (1965)
the discrepancy between the two experimental boundaries was not completely understood. Nevertheless, the
upper experimental boundary from Figure 2 is clearly aligned with the contour curves of Gpax, revealing
a correlation between the transition phenomena and the energy amplification factor. We have carried out the
computation of Gpax at the four points of the upper experimental branch of Figure 2. The optimal values
have been included in Table 1. A remarkable fact is that the experimental transition takes place within the
range

Gmax =71.58 £ 0.16,
with 0.2% relative deviation. This suggests that, although our analysis is only linear, the nonmodal transient

growth plays a very important role in the subcritical transition. However, this mechanism is not sufficient for
the eventual development of spiral turbulence.
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4. Conclusions

Transient linear effects in various flows have been studied in recent years, but there has not been much
attention of this kind to Taylor—Couette flows. Here we have provided comprehensive exploration of the op-
timal transient growth in the counter-rotating Taylor—Couette problem. Significant energy transient growth
has been found in the linearly stable regime of counter-rotation. The numerical computations of the max-
imum amplification factor are consistent with the experimental threshold values obtained by Coles. Non-
axisymmetric modes seem to be more effective in the transient mechanism and axisymmetric azimuthal
streaks may still be observed as well, although they exhibit a weaker amplification. Direct numerical simula-
tion of the problem would be required in order to understand how these linear effects combine with nonlinear
ones to bring about transition to turbulence.
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