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c© 2000 Birkhäuser Verlag, Basel

Zeitschrift für angewandte
Mathematik und Physik ZAMP

Determining the self-rotation number following a
Naimark–Sacker bifurcation in the periodically forced
Taylor–Couette flow
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Abstract. Systems which admit waves via Hopf bifurcations and even systems that do not un-
dergo a Hopf bifurcation but which support weakly damped waves may, when parametrically
excited, respond quasiperiodically. The bifurcations are from a limit cycle (the time-periodic
basic flow) to a torus, i.e. Naimark–Sacker bifurcations. Floquet analysis detects such bifurca-
tions, but does not unambiguously determine the second frequency following such a bifurcation.
Here we present a technique to unambiguously determine the frequencies of such quasiperiodic
flows using only results from Floquet theory and the uniqueness of the self-rotation number (the
generalization of the rotation number for continuous systems). The robustness of the technique
is illustrated in a parametrically excited Taylor–Couette flow, even in cases where the bifurcating
solutions are subject to catastrophic jumps in their spatial/temporal structure.
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1. Introduction

The usual discussion of parametric excitations is in terms of systems where the
governing equations are reduced to systems of Mathieu-type equations (Mathieu
[16]). These reductions are strictly only possible in systems whose natural fre-
quencies are fixed by external constraints. A typical example is Faraday waves
(Faraday [5]), surface waves due to a harmonic oscillation of a container of fluid
in the direction parallel to gravity. In ideal fluids of infinite extent and subjected
to small amplitude oscillations, this excitation of the free surface is described by
the Mathieu equation

η̈ +
(

Ω2 − a sin 2ωt
)
η = 0, (1)

where Ω is the natural frequency of surface waves in the unmodulated system,
a and ω are the amplitude and frequency of the vertical oscillations of the con-
tainer, and η is the vertical displacement of the free surface from its flat, mean
position. This equation of Mathieu ([16]) has been studied extensively (see for
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example Jordan & Smith [10]). A simple mechanical system where it arises is in
characterizing the motion of a simple pendulum subjected to a vertical oscilla-
tion of its pivot. This equation has provided the starting point for the study of
parametric resonance. It is significant to note that the first reported observation
of parametric resonance was by Faraday ([5]) in a hydrodynamic system and has
since led to many important implications in many branches of engineering and
physics. Examples of parametric resonance include the response of mechanical
and elastic systems to time-varying loads. Parametric resonance due to even very
small vibrational loading can stabilize an unstable system, or destabilize a stable
system, depending on particular characteristics of the system.

For systems that are governed by Mathieu-type equations (including linear
damping terms), their response to parametric excitations can be expected to be
either synchronous with the applied periodic forcing, or to have a subharmonic
response (Davis & Rosenblat [4]). This means that when the trivial solution,
i.e. the fixed point η = 0 in (1), loses stability, the bifurcating solution is either
T -periodic (synchronous) or 2T -periodic (subharmonic), where T = 2π/ω is the
period of the applied forcing.

Hydrodynamic systems in which parametric resonance has been identified and
studied are typically characterized by their ability to support waves in the absence
of external modulations (e.g. see Miles & Henderson [17]), and these are waves
in the classic sense, i.e. surface waves, gravity waves, Rossby waves, etc. Many
such hydrodynamic systems have been studied in certain distinguished limits (e.g.
Benjamin & Ursell [2]; Gershuni & Zhukhovitskii [6]; Kelly [13]; Gresho & Sani
[7]; Craik & Allen [3]), where the governing equations reduce to either a Hill’s or
(damped) Mathieu’s equation. Not all hydrodynamic systems of interest reduce to
these simple forms, but they still may be susceptible to parametric excitation. In
general, the governing equations for the departures from the unforced state reduce
to a form

ẋ = (A + B sinωt) x + f(x). (2)

In general, (2) cannot be reduced to a system of (damped) Mathieu equations,
and the response to parametric excitation can be more complicated than either
synchronous or subharmonic.

An important difference between the stability of systems governed by Mathieu’s
equation and general systems is that in the former case the base state is a fixed
point independent of the amplitude and frequency of the external forcing, whereas
in more general systems, the base state is a periodic orbit that depends on the
forcing parameters, usually with the same frequency as that of the forcing. In the
classical Faraday experiment, for example, the basic state of the forced system is
a rigid body motion and is at rest in the frame of reference of the container; the
base state in this reference frame is unaware of the forcing. In general, there is no
such reference frame when only some of the boundary conditions change due to
the parametric excitation. So, in general, the basic state is also a function of the
amplitude and frequency of the forcing, and the base state is periodic with the
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period of the forcing.
In Hu & Kelly [9] and Marques & Lopez [15], the stability of such a hydrody-

namic system was investigated using Floquet theory. The system in question is
the flow between two co-axial cylinders, the outer one being stationary and the
inner one rotating at some fixed rate (the usual Taylor–Couette flow) and sub-
jected to a harmonic oscillation in the axial direction. This system has also been
investigated experimentally by Weisberg, Kevrekidis & Smits [20]. The stability
of the corresponding time-periodic basic state is reduced to the determination of
the growth rates of the solutions of a linear system of the form:

Gẋ = H(t)x = (A+B sinωt+ C cosωt)x. (3)

The entries in the matrices G and H are given in the appendix of Marques &
Lopez. H is periodic, of period 2π/ω where ω is the frequency of the axial os-
cillations of the inner cylinder, and G is time-independent and positive definite.
The system is governed by a number of nondimensional parameters. Dimension-
ally, the inner cylinder oscillates in the axial direction with velocity U sin Ωt and
rotates at constant angular velocity Ωi. Its radius is ri and the radius of the outer
stationary cylinder is ro. The annular gap between the cylinders is d = ro − ri.
These parameters are combined to give the following nondimensional governing
parameters:

the radius ratio e = ri/ro,
the Couette flow Reynolds number Rei = driΩi/ν,

the axial Reynolds number Rea = dU/ν,
the nondimensional frequency ω = d2Ω/ν,

where ν is the kinematic viscosity of the fluid. The axial and azimuthal wave
numbers of the bifurcating solutions are k and n respectively.

The stability of the basic state is determined by applying classical Floquet
theory (e.g. Joseph [11], Guckenheimer & Holmes [8]) and numerical integration
to (3). The fundamental matrix of (3) is the solution of the system

GẊ = H(t)X, X(0) = I, (4)

where I is the identity matrix. Integrating over a complete period T = 2π/ω, one
obtains the monodromy matrix of the system X(T ), whose eigenvalues γj , j =
1, . . . , 4M , called Floquet multipliers, control the growth rate of the perturbations
(M is the size of the discretized system).

From a dynamical systems point of view, integration over one period is equiva-
lent to considering the Poincaré map over a complete period. Therefore, we move
from the analysis of a periodic ODE, to the analysis of an autonomous map. The
base state of (2) is a fixed point of the map. The eigenvalues of the monodromy
matrix are the eigenvalues of the linearized Poincaré map in the neighborhood of
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the fixed point. If all the eigenvalues have moduli less than one, all the pertur-
bations of the basic state go to zero, and the basic state is asymptotically stable
(an attractor). The basic flow losses stability when at least one eigenvalue of the
monodromy matrix crosses the unit circle. There are three different generic cases
to be considered. If the critical eigenvalue crosses at +1 (a fold bifurcation), the
bifurcated state is a fixed point of the map, corresponding to a periodic orbit of
the original ODE with the same frequency as that of the forcing. The bifurcation
is said to be synchronous and no new frequency is introduced. If the critical eigen-
value crosses at −1, then we have a period doubling bifurcation where the fixed
point becomes a period-2 fixed point of the map, corresponding to a periodic orbit
of the original ODE with a frequency half of the forcing frequency, the so-called
subharmonic case. For the Mathieu equation (with or without damping) these are
the only possibilities when the basic state bifurcates (see Davis & Rosenblat [4];
Jordan & Smith [10]).

The third generic case corresponds to a loss of stability due to a pair of complex-
conjugate eigenvalues crossing the unit circle not at ±1. Then, an attracting
invariant circle emerges from the fixed point of the map. It is a Hopf bifurcation
for maps, called a Naimark–Sacker bifurcation (see Arnold [1], Kuznetsov [14] for
details). The periodic orbit of the original ODE is now surrounded by an invariant
torus. On this torus, the solution of the system has two frequencies. One of the
frequencies is the forcing frequency (the frequency of the basic state, ω), which
survives the bifurcation. The other bifurcating frequency, denoted ωs, is associated
with the phase (angle of crossing) of the complex-conjugate critical eigenvalues of
moduli one, γ1,2 = e±iφ, φ = 2πωs/ω. General hydrodynamic systems of the form
(2) can experience such a bifurcation. It is this case that is of primary interest
here.

Notice that for the angle φ in γ1,2 = e±iφ, its absolute value is unique only
mod(2π). Therefore, the definition of the bifurcating frequency as ωs = ωφ/2π
is ambiguous. However, this ambiguity can be removed for continuous systems.
Near the bifurcation, the Poincaré map P is a diffeomorphism of the invariant
bifurcating circle. For such a diffeomorphism the rotation number is defined as
the average angle by which the map rotates the invariant circle; the definition
involves a limit for n → ∞ of the iterates Pn. The rotation number is unique
mod(2π), removing the previous sign ambiguity. When P is the period-1 map of
a continuous system such as (2), then the remaining ambiguity associated with
the mod(2π) can also be removed by following the continuous system during a
whole period and continuously monitoring the angle rotated. This unambiguously
defined angle, a generalization of the rotation number for continuous systems, is
called the self-rotation number φsr. All the pertinent definitions and proofs can be
found in Peckham [18]. The bifurcating eigenvalues at criticality are γ1,2 = e±iφsr .
We finally define the bifurcating frequency as ωs = ωφsr/2π. In the following, we
will refer to the self-rotation number simply as φ.

In Mathieu’s equation (1), the natural frequency, ωs, is known a priori and is
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independent of the forcing. In a generic ODE, and in our PDE problem, the second
frequency following the Hopf bifurcation, ωs, is not known a priori, and in general
depends on the forcing in a nonlinear and possibly discontinuous fashion. In order
to determine the self-rotation number one must determine the imaginary parts of
the Floquet exponents unambiguously, as these give ωs. The Floquet analysis does
not determine the imaginary parts of the Floquet exponents unambiguously and
so when a quasiperiodic state results, the question arises as to how to determine
its frequencies.

2. Correcting the phase and extracting the frequency

From Floquet theory, a linear problem with periodic coefficients like (4) has a set
of fundamental solutions at criticality of the form

x(t) = xp(t)e±iωst, (5)

with xp(t) periodic, i.e. xp(t + T ) = xp(t), where T = 2π/ω is the period of
the applied forcing. Therefore, the critical Floquet multipliers are γ1,2 = e±iωsT .
However, the Floquet analysis does not give the self-rotation number φ = ωsT ,
but rather an angle φ̃ ∈ [0, π]. The relationship between φ̃ and φ is

φ = 2lπ ± φ̃, (6)

where the sign and the integer multiple l are undetermined. So the question
arises as to how to unambiguously determine ωs. One could, of course, apply
the definition of the self-rotation number in a brute force fashion. In that case,
one must compute the solution of the system for very large times t; in fact, one
would need the limit t →∞. Instead, we have developed a method to determine
the self-rotation number from computations over one period of the base state at
various points in parameter space that uses the continuity of the eigenvalues of
the system and homotopy considerations.

Let φ be the self-rotation number, ωs = φ/T , and ω̃ = φ̃/T . We first establish
the relationship between the self-rotation number, φ, and the phase given by the
Floquet analysis, φ̃. When φ lies in the interval [2lπ, (2l+1)π], the Floquet analysis
gives φ̃ = φ− 2lπ; and when φ ∈ [(2l + 1)π, (2l + 2)π], the Floquet analysis gives
φ̃ = (2l + 2)π − φ. Incorporating both cases into a single expression, then for
φ ∈ [mπ, (m+ 1)π],

φ =
(
m+

1
2
)
π + (−1)m

(
φ̃− π

2
)
. (7)

For an isolated point in parameter space, we do not know φ and m is undeter-
mined. However, if we know the value of m for a particular state of the system,
corresponding to a certain combination of parameter values, we can determine the
value of m for any other state continuously connected with the known particular
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state. In fact, m remains constant as the parameters are varied continuously unless
φ̃ goes through zero or π. In these cases, from (7),

φ̃→ 0⇒ m→ m− (−1)m, and φ̃→ π ⇒ m→ m+ (−1)m. (8)

The deduction is as follows. When φ̃→ 0 for a given value of m (i.e. φ ∈ [mπ, (m+
1)π]), (7) gives φ→ (m+ (1− (−1)m)/2)π. For m even, φ→ mπ, and therefore φ
moves to the interval [(m− 1)π,mπ], and hence m decreases by one. For m odd,
φ→ (m+ 1)π, and therefore φ moves to the interval [(m+ 1)π, (m+ 2)π], and so
m increases by one. An analogous argument applies when φ̃→ π.

In order to apply (8) we need to know the value of m for some state of the
system. The problem is that we do not know what m is for any isolated case.
In general however, in the limit that the forcing amplitude goes to zero, the sec-
ond bifurcation frequency ωs asymptotes to the natural frequency of the unforced
system, and in the limit of large forcing frequency, one obtains ωs < ω/2 so that
φ = 2πωs/ω < π and hence m = 0. For any particular problem, there may be oth-
er means of determining m in some part of parameter space by taking appropriate
limits.

(a) (b)
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Figure 1.
(a) Phase of the bifurcating solution vs. ω/ωs; dot–dash line: self-rotation number φ = 2πωs/ω;
solid line: phase from the analysis φ̃; (b) frequency of the bifurcating solution vs. ω/ωs; dot-dash
line: true frequency ωs; solid line: frequency from the analysis ω̃; and dotted line: ωs = 0.5ω.

As an example of this method of determining the frequency ωs from φ̃, we
consider the idealized case in which the bifurcating frequency, ωs, is independent
of the forcing frequency ω. The self-rotation number and the bifurcating frequency
are related by

φω

2π
= ωs = constant, (9)
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so we have φ = (2πωs)/ω, i.e. the self-rotation number is inversely proportional
to the frequency of the basic flow (the forcing frequency ω). Figure 1a shows this
relationship as a dot–dash line, along with the phase φ̃ that results from the Flo-
quet analysis as a solid line. The values of ω where φ̃ = 0 correspond to locations
where the bifurcating frequency ωs is an integer multiple of the forcing frequency
ω. The values of ω where φ̃ = π are not special and correspond to subharmonic
responses, i.e. the bifurcating frequency is an odd multiple of ω/2. Apart from
these two classes of forcing frequencies, the system responds quasiperiodically. In
the simple case that ωs is independent of ω, it is straight forward to determine ωs
from ω̃ = φ̃/T using (8). This is shown in Figure 1(b).

In general, and in particular as the amplitude of the forcing is increased, ωs will
be a function of ω. The relationship ω̃ = φ̃/T still applies and (7) and (8) can still
be used, but now we lack a priori knowledge of exactly where the synchronous and
subharmonic points are, i.e. the value of m at any given ω. This is not a serious
limitation for ω corresponding to small m, but as ω → 0 it very quickly becomes
exceedingly difficult to determine the corresponding value of m.

There are further complications that arise when there are catastrophic jumps
in the spatial structure of the solution as either the frequency or amplitude of the
applied forcing is varied smoothly. We have assumed that the phases φ and φ̃ are
continuous functions of the parameters of the system, and in particular of ω. This
is true for systems of finite dimension, but for infinite dimensional systems, the
issue is more difficult (Kato [12]). Nevertheless, our analysis refers to numerically
computed phases obtained from the discretization of the system, which is always of
finite dimension. So we will consider that the phases are continuous functions of the
parameters. Only an additional problem remains: for particular parameter values
two different pairs of complex-conjugate eigenvalues can simultaneously cross the
unit circle. In these cases, the most dangerous eigenvalue can change from one
complex-conjugate pair to another in a neighborhood of the critical parameter
values. Then, although the phases on both eigenvalue branches are continuous,
the phase of the critical state is discontinuous because we must switch branches
when following the most dangerous eigenvalue. This behavior may arise when
more than one parameter is varied and higher codimension points are encountered
where more than one mode becomes critical. In the following section we illustrate
cases where this problem arises and how our technique may still be used to robustly
and unambiguously determine the frequencies of these quasiperiodic flows.
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3. Examples of quasiperiodic response in Taylor–Couette flow

In the Taylor–Couette flow with axial oscillations of the inner cylinder, the basic
state consists of circular Couette flow with a superimposed annular Stokes flow. It
is independent of the axial and azimuthal directions, and time-periodic with the
period of the forcing; an analytic description of the basic flow is derived in Marques
& Lopez [15]. Over an extensive range of parameter space, the primary bifurcation
is to an axisymmetric state that is periodic in the axial direction and time, with
the same temporal period as the forcing (Weisberg et al. [20]; Marques & Lopez
[15]). Due to the symmetries of the system, the bifurcation is not the generic fold
or saddle–node bifurcation, but a pitchfork for periodic orbits (Kuznetsov [14]).
When the basic solution loses stability, two time-periodic solutions resembling
Taylor vortices appear; the symmetry S changes one to the other.

The analysis of Marques & Lopez [15] however, showed that in narrow windows
of parameter space, where interaction and competition between different axial
modes occurs, the primary bifurcation is to a state that is periodic in both the
axial and the azimuthal directions, and temporally has the forcing frequency as
well as a new frequency ωs, so that the dynamics are on a torus. These regions in
parameter space are pockets of spatio-temporal complexity. Part of their figure 10
is reproduced here as figure 2, showing examples for the radius ratio e = 0.905 case.
When Rea = 75 there is a range of ω over which the azimuthal mode n = 1 is most
dangerous and for Rea = 100, the n = 2 mode is most dangerous. Normally, in
the unforced Taylor–Couette flow, these azimuthal modes are interpreted as either
single (n = 1) or double (n = 2) spirals, but here, they can manifest themselves
as tilted, wobbling, and deforming Taylor cells, due to the interaction with the
axial and temporal periodicities. Such tilted cells were noted in the experiments
of Weisberg [19] within the same parameter range, but were not investigated in
detail in that study. Hu & Kelly [9] only considered the axisymmetric modes
(n = 0) for this flow, but did consider non-axisymmetric modes in the Taylor–
Couette flow with an imposed time-periodic axial pressure gradient. In the range
of parameters they considered, the axisymmetric mode was most dangerous.

We shall begin by analyzing the Rea = 75 case where the amplitude of the
periodic forcing is large enough that over a range of the forcing frequency the
bifurcation is to a torus and the resulting second frequency, ωs, varies with the
forcing frequency ω (as well as with the forcing amplitude Rea). From figure 2a,
we see that the axisymmetric mode n = 0 is the most dangerous (i.e. for a given
Rea, ω, and n, the lowest value of Rei over the range of axial wave numbers k at
which a pair of Floquet multipliers first cross the unit circle), except in the range
5.6 < ω < 9.8, where the azimuthal mode n = 1 is most dangerous. The higher
azimuthal modes (n ≥ 2) have larger critical Rei for any given ω at this forcing
amplitude (Rea = 75), and so would not normally be observed in any physical
realization of the flow.

A limit in which it is clear how to extract ωs from φ̃ is in the limit of very



Vol. 51 (2000) Self-rotation number following a Naimark–Sacker bifurcation 69

(a) Rea = 75 (b) Rea = 100
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Figure 2.
Critical Rei versus ω in for (a) Rea = 75 and (b) Rea = 100, and various azimuthal modes n as
indicated.

(a) Rea = 75, n = 1 (b) Rea = 75, n = 2
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Figure 3.
Frequency of the bifurcating solution ωs(ω) (together with ω̃ under the dotted line) when Rea =
75 for azimuthal modes (a) n = 1 and (b) n = 2.

weak forcing (Rea → 0), as in this limit ωs is independent of the forcing (Rea
and ω). By dividing φ̃ from the Floquet analysis of a weakly forced system by the
forcing frequency ω, and adjusting the sign and adding the multiples of 2π so that
it matches the natural frequency of the unforced (Rea = 0) system, one can then
determine ωs. This is the technique employed by Hu & Kelly [9]. However, it is
not applicable as Rea becomes larger, and in the present example with Rea = 75
it is ambiguous. At high Rea, ωs may be some multiple of 2π different from the
natural frequency of the unforced flow. Another limit in which it is possible to
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determine ωs unambiguously from φ̃ is ω →∞. For ω large enough, the effect of
the external forcing on the flow goes to zero, because it is confined to the Stokes
boundary layer of thickness

√
2/ω (Marques & Lopez [15]). Therefore ωs remains

constant, and from (6), φ = 2πωs/ω → 0. Then, φ ∈ [0, π] andm = 0. In figure 3a,
we plot both ω̃ and ωs obtained by determining the self-rotation number as in §2.
It should be compared with figure 1b, which corresponds to the ideal cases where
ωs = constant.

(a) Rea = 100, n = 1 (b) Rea = 100, n = 2
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Figure 4.
Frequency of the bifurcating solution ωs(ω) (together with ω̃ under the dotted line) when Rea =
100 for azimuthal modes (a) n = 1 and (b) n = 2.

For larger Re, the dependence of ωs on ω becomes increasingly more nonlinear.
For the n = 1 case at Rea = 100, the quasiperiodic response when ω is in the
neighborhood of 15 is particularly nonlinear (see figure 4a). However, the locus
of primary Hopf bifurcation points is continuous with varying ω, and using the
techniques of §2, we are still able to determine the self-rotation number, and hence
the second bifurcating frequency ωs. Note that the critical Rei and k change
dramatically with both Rea and ω (see figure 5). From figure 2b, for Rea = 100,
the n = 0 mode is the most dangerous except in the range 11.91 < ω < 17.84,
where the n = 2 mode is the most dangerous, and for a very small range 11.74 <
ω < 11.91, n = 1 dominates. For lower Rea, the window of non-axisymmetric
response is shared more evenly between the n = 1 and n = 2 modes, and as Rea
is reduced further n = 1 dominates, as described above.

The determination of the frequency ωs in the n = 2 case is much more compli-
cated. Here, the locus of primary Hopf bifurcation points is not continuous in ω
for fixed Rea. Instead, we find a range 20.045 < ω < 30.380 over which the sta-
bility curves Rei vs. k have two minima (figure 6), each corresponding to distinct
branches (i.e. loci of local minima in Rei for variable ω and fixed Rea) of bifurcat-
ing solutions. There is a large difference in the axial wavelengths associated with
these two branches. Over the range of ω where the two n = 2 solutions co-exist,
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(a) Rea = 100, n = 1 (b) Rea = 100, n = 2
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Figure 5.
Critical Rei and k versus ω for Rea = 100 and azimuthal modes (a) n = 1 and (b) n = 2.

the n = 0 solution is the most dangerous and hence the n = 2 solutions would
not be physically realized. The two branches, where they exist, are continuous,
branch 1 for ω > 20.045 and branch 2 for ω < 30.380. From figure 2b we see
that over the range 11.8 < ω < 17.8, branch 2 is physically observable, and it
would be of great interest to be able to predict the frequencies associated with
this quasiperiodic flow.

The determination of ωs on branch 1 is straightforward. Since the branch
extends beyond ω > 2ωs, we can directly apply the technique from §2, starting
from a suitably large ω where m = 0 and detect the synchronous (φ̃ = 0) and
subharmonic (φ̃ = π) points as ω is reduced in order to determine m. Such a
straightforward application is not possible for branch 2 as, for fixed Rea = 100, it
ceases to exist for some ω < 2ωs, so we do not have a simple method to determine
m. However, branch 2 is continuous, as illustrated by the curves of critical Rei
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and k in figure 5b, and so it is reasonable to expect (Kato [12]) that ωs will also
be continuous on branch 2.
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Figure 6.
Stability boundaries in (Rei, k) space for Rea = 100, azimuthal mode n = 2, and ω as indicated.
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(a) Frequency from the Floquet analysis ω̃ and (b) the corresponding ωs, versus axial wavenumber
k, for Rea = 100, n = 2, and forcing frequency ω as indicated

We shall use the continuity of eigenvalues from finite dimension dynamical
systems theory (Kato [12]) in order to determine ωs corresponding to branch 2,
which does not extend to ω → ∞. The point is that the eigenvalues (in this
case, ωs) are not only continuous functions of the forcing frequency ω, but of all
parameters governing the flow, and in particular of the axial wavenumber k. The
locus of points where the eigenvalues cross the unit disk in the multi-dimensional
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parameter space governing the system is a continuous manifold, and this manifold
may have folds so that a particular cut through the fold with all parameters fixed
except for one of them, may have a discontinuity in the eigenvalue as a function
of that parameter. However, with a suitable variation of the other parameters, a
continuous connection between any two points on the manifold can be established.
So, when we talk about branches, we mean particular cuts through this manifold
on which the eigenvalues are continuous functions of the varying parameter.

In order to determine ωs for branch 2, as illustrated in figure 4b, we have
selected an ω where both branches co-exist, and where we know the value of m
corresponding to branch 1 (e.g. ω = 28, corresponding to the dot-dash line in
figure fig6). We start from the minimum on the Rei versus k curve corresponding
to branch 1 (k ≈ 2.2), where from figure 4b we know that m = 1. Then we vary
k at the fixed ω = 28 value, keeping track of when φ̃ → 0 or π to increment
m, until we reach the other minimum, corresponding to the branch 2 solution
(k ≈ 3.4). Once this is done, we have the value of m on a particular point on
branch 2, and by continuity with varying ω, the ωs on the entire branch 2 can be
determined in the manner described earlier. This determination is illustrated in
figure 4b. Examples at other fixed ω values for varying k are shown in figure 7.
These distinct determinations with varying k are consistent with the results shown
in figure fig4b, and give an additional check of the continuity-based technique.
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