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In a recent experiment on the flow between two concentric cylinders with the inner
cylinder rotating and the fluid being stably stratified, Flór et al. (Phys. Fluids, vol.
30, 2018, 084103) found helical wave structures confined to the inner cylinder in
an annulus with small inner-to-outer radius ratio (very large gap) in regimes where
the Froude number (ratio of cylinder rotation frequency to buoyancy frequency) is
less than one. These helical waves were reported to originate at the corners where
the inner cylinder meets the top and bottom boundaries, and were found to be
asymmetric with the lower helical wave being more intense. These observations are
in marked contrast with other stratified Taylor–Couette experiments that employed
much larger inner-to-outer radius ratios and much larger annulus height-to-gap ratios.
Here, we present direct numerical simulations of the Navier–Stokes equations, with
a Boussinesq approximation that accounts for centrifugal buoyancy effects which are
normally neglected. Fixing the stratification and increasing the rotation rate of the
inner cylinder (quantified by a Reynolds number), we find a sequence of bifurcations,
each one introducing a new frequency, from the steady base state to a three-torus
state. The instabilities are generated at the corners where the inner cylinder meets the
endwalls, and the first instability is localized at the lower corner as a consequence of
centrifugal buoyancy effects. We have also conducted simulations without centrifugal
buoyancy and find that centrifugal buoyancy plays a crucial role in breaking the
up–down reflection symmetry of the problem, capturing the most salient features of
the experimental observations.

Key words: Taylor–Couette flow, stratified flows

1. Introduction
The instability of the flow between two differentially rotating cylinders with the

fluid being stably stratified is an idealized setting which may be of relevance to
processes in the atmosphere and oceans (Hart 1979; Plougonven & Zhang 2014)
and accretion disks (Avila 2012). For the most part, stratified Taylor–Couette flow
has been considered in regimes where the annular gap between the two cylinders
is relatively small, and theoretical treatments usually assume periodicity in the axial

† Email address for correspondence: juan.m.lopez@asu.edu
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FIGURE 1. (a) Dye visualization of two helical waves travelling along the rotating inner
cylinder from the top and bottom, reproduced from Flór et al. (2018). The flow conditions
correspond to salt-stratified Taylor–Couette flow in the very wide gap regime with radius
ratio η = Ri/Ro = 1/15, Froude number Fr = 0.53 and inner cylinder Reynolds number
Rei = 521. The dimensions of their annulus are inner radius Ri = 2.5 cm, outer radius
Ro= 37.5 cm and working depth H= 40 cm. (b) Schematic of the fluid domain, including
the initial temperature stratification Tin(z).

direction. Molemaker, McWilliams & Yavneh (2001) and Yavneh, McWilliams &
Molemaker (2001) showed that, even when the hydrodynamics is centrifugally stable,
stable stratification can lead to instability due to a resonant interaction between
non-axisymmetric inertia–gravity waves trapped near each of the two cylinders. This
instability has come to be known as the strato-rotational instability (SRI), and it was
first observed experimentally by Le Bars & Le Gal (2007).

Our present investigation is motivated by the recent experiments of Flór et al.
(2018) who found spiral structures confined to the inner rotating cylinder in a regime
where the ratio of the inner to outer cylinder radii is quite small, Ri/Ro = 1/15; see
figure 1(a) for a visualization of the flow from their experiments. This is a very
different regime to that typically studied for SRI. The spiral structures they observed
are reminiscent of the radiative instability (RI) reported by Riedinger, Le Dizès &
Meunier (2011), who considered a rotating cylinder in a large rectangular tank of
stratified fluid. Using a large axial wavenumber approximation, Le Dizès & Riedinger
(2010) showed how RI and SRI are related, with SRI being transformed into RI as
the gap between the two cylinders becomes large. As well as conducting experiments,
Riedinger et al. (2011) considered the linear stability analysis of the potential flow
around an isolated rotating cylinder of infinite axial length in a linearly stratified
medium (i.e. the velocity of their base flow had azimuthal component v ∝ 1/r, zero
meridional components u=w= 0 and extended radially out to r→∞). They mostly
considered inviscid flow, and presented some comments on viscous effects. The main
mode of instability was found to result in helical waves with azimuthal wavenumbers
that depend on the Froude number Fr =Ω/N and a Reynolds number Rei =ΩR2

i /ν,
where N is the Brunt–Väisälä buoyancy frequency, Ω the rotation rate of the cylinder
of radius Ri and ν is the kinematic viscosity. Their experiments were conducted in
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Impact of centrifugal buoyancy on strato-rotational instability 890 A9-3

a salt-stratified tank of horizontal cross-section 240 cm × 74 cm and depth 48 cm,
which was filled to a height of 45 cm. Their experiments used three different cylinders
of radii Ri = 12.5, 15 and 20 cm. They typically observed instabilities consisting of
helical waves travelling up (down) from the bottom (top). They expected the flow
to have up–down reflection symmetry, but noted: ‘nevertheless, in a few cases, we
observe that one of the two waves can be dominant’, and ‘there is a difference
between the frequencies of the two waves . . . slow drift toward the top’. They also
noted that the stratification N was not uniform across the depth, with departures
in the top and bottom 10 cm of the depth, which they ascribed to salt diffusivity,
turbulent mixing and evaporation effects. They did not consider centrifugal buoyancy
effects as a potential contributor.

For the most part, centrifugal buoyancy effects in stratified Taylor–Couette flows
have been ignored. Barcilon & Pedlosky (1967) suggested that centrifugal buoyancy
effects may not be negligible, and Shalybkov & Rüdiger (2005) raised the cautionary
point that the use of the usual Boussinesq approximation (which does not account for
centrifugal buoyancy) for small Froude numbers seems to still be an open question.
Rüdiger et al. (2017) considered the centrifugal buoyancy for parameter regimes
corresponding to their experiments, and concluded that since RiΩ

2/g is small (where
g is gravitational acceleration), that they could neglect centrifugal buoyancy effects.
They also studied the linear stability of stratified Taylor–Couette flow assuming a
unidirectional base flow and periodicity in the axial direction, and found discrepancies
between model and experimental results which they suggested may stem from the
model ignoring endwall effects, but exploring these was ‘beyond the scope’ of
their study.

So far, the theoretical studies of stratified Taylor–Couette flow (e.g. Hua, Le Gentil
& Orlandi 1997; Shalybkov & Rüdiger 2005; Gellert & Rüdiger 2009; Park & Billant
2013; Leclereq, Nguyen & Kerswell 2016; Rüdiger et al. 2017; Park et al. 2018) have
considered the axial direction to be periodic and the base state to be the unidirectional
flow of Taylor (1923),

v = Ar+ B/r, (1.1)

where v is the azimuthal component of velocity and the constants A and B depend
on the radii and rotation rates of the inner and outer cylinders, together with a linear
vertical stratification. All physical experiments have finite axial length, and differential
rotation between the bottom endwall and one or both cylinders (the top is sometimes
open). This leads to vortex line bending near one or both corners where the rotating
inner cylinder meets the stationary bottom and top endwalls, driving a secondary
meridional flow. As such, the base flow is not unidirectional. This meridional flow
will be shown here to be critical in determining the helical instability reported in the
experiments of Flór et al. (2018).

The outline of the paper is as follows. In § 2, the governing equations are described
for the fully enclosed finite annulus with rotating inner cylinder, as is the numerical
technique used to solve them. Section 2.1 describes the symmetries of the system,
and how neglecting or accounting for centrifugal buoyancy affects them. Details of
the basic state are given in § 3. These are contrasted with the idealized potential
flow and circular Couette states. The influence of centrifugal buoyancy on the basic
state is also described. Section 4 explores the primary instabilities when centrifugal
buoyancy is ignored, showing that the extra symmetry that comes from ignoring
centrifugal buoyancy results in peculiar dynamics. These peculiarities are removed in
§ 5 by accounting for centrifugal buoyancy, whose main impact is found to be that
the helical wave instability occurs at the bottom corner (where the rotating cylinder
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890 A9-4 J. M. Lopez and F. Marques

meets the stationary bottom endwall) at a Reynolds number Re that is lower than
the critical Re when centrifugal buoyancy is ignored. For slightly larger Re, the
top corner becomes unstable to another helical wave mode, and the two helical
waves have slightly different frequencies leading to modulation dynamics. They have
much in common with what is observed experimentally, and comparisons with those
observations are presented in § 6.

2. Governing equations
Consider a completely fluid-filled annulus of height H, inner radius Ri and outer

radius Ro. The outer cylinder, top and bottom walls are stationary and the inner
cylinder rotates at constant angular velocity Ω . The top and the bottom walls are
maintained at fixed temperatures, T∗0 +1T∗/2 for the top endwall and T∗0 −1T∗/2 for
the bottom endwall, while both cylinders are insulated. T∗0 is a reference temperature,
and the temperature difference between the top and bottom 1T∗ is positive, so that the
vertical temperature gradient is stabilizing. Gravity g points downwards. The kinematic
viscosity of the Newtonian fluid is ν, its thermal diffusivity is κ , and its coefficient
of volume expansion is α. A schematic of the set-up is shown in figure 1(b).

Using the annular gap D= Ro − Ri as the length scale, the viscous diffusion time
across the gap D2/ν as the time scale, 1T∗ as the temperature scale and employing
the Boussinesq approximation accounting for centrifugal buoyancy (Lopez, Marques
& Avila 2013), the non-dimensional governing equations are

(∂t + u · ∇)u=−∇p+∇2u+Gr T ẑ+ εT(u · ∇)u, (2.1)
(∂t + u · ∇)T = σ−1

∇
2T, ∇ · u= 0, (2.2)

where u = (u, v, w) is the non-dimensional velocity field in the cylindrical polar
coordinate system (r, θ, z), p is the dynamic pressure and ẑ is the unit vector in
the vertical direction z. The term εT(u · ∇)u accounts for centrifugal buoyancy
effects. The fluid domain is r ∈ [ri, ro] = [η/(1 − η), 1/(1 − η)], θ ∈ [0, 2π) and
z∈ [−γ /2, γ /2], where η=Ri/Ro is the radius ratio and γ =H/D is the aspect ratio.
We shall fix the annular geometry to η= 0.07 and γ = 1, very close to those of the
experimental apparatus used in Flór et al. (2018).

The boundary conditions for temperature and velocity are

r= ri : ∂T/∂r= 0, u=w= 0, v = Re, (2.3a)
r= ro : ∂T/∂r= 0, u=w= v = 0, (2.3b)

z=−γ /2 : T =−1/2, u=w= 0, v = Re q(r), (2.3c)
z= γ /2 : T = 1/2, u=w= 0, v = Re q(r), (2.3d)

where the azimuthal velocity at the corners where the rotating cylinder meets the
stationary top and bottom endwalls has been regularized by using

q(r)= exp[−c(r− ri)], with c= 100. (2.4)

The radial function q(r) is almost zero everywhere except in a narrow interval
(controlled by c) close to the rotating inner cylinder. In this way the boundary
condition on v is continuous, avoiding Gibbs phenomena associated with discontinui-
ties in the numerical simulations, and mimics the gap that exists in any real device
with the inner cylinder rotating and stationary endwalls. The value of c is chosen
such that q decreases from 1 to 0.05 over 3 % of the annular gap.
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Impact of centrifugal buoyancy on strato-rotational instability 890 A9-5

The non-dimensional groups appearing in the governing equations and boundary
conditions are

Prandtl number σ = ν/κ, (2.5a)
Reynolds number Re=ΩRiD/ν, (2.5b)

Grashof number Gr= αg1T∗D3/ν2, (2.5c)
relative density variation ε = α1T∗, (2.5d)

radius ratio η= Ri/Ro, (2.5e)
aspect ratio γ =H/D, (2.5f )

where D=Ro−Ri. The Prandtl number is a ratio of fluid properties and is constant in
a given experiment. The Grashof number Gr and the relative density variation ε are
proportional to the imposed temperature gradient, and their ratio is the Archimedes
number

Ar=Gr/ε = gD3/ν2. (2.6)

Since Ar is constant in any real experiment, ε = Gr/Ar is enslaved to Gr, and
so there are only two independent dynamical parameters in the problem, Re and
Gr. Other non-dimensional numbers used in this and related studies are the ratio
of buoyancy and rotation time scales, known as the Froude number Fr = Ω/N,
where N =

√
αg1T∗/H is the Brunt–Väisälä frequency, and RN = ND2/ν, the

non-dimensional buoyancy frequency, which is the ratio of the viscous and buoyancy
time scales. These are related to Re and Gr

Fr=
Re
RN

D
R i
=

Re
RN

(1− η)
η

, RN =

√
Gr
γ
. (2.7)

The experiments of Flór et al. (2018) used water with salt as the stratifying
agent. Instead, we shall use temperature and fix the Prandtl number σ = 6,
nominally corresponding to water at approximately 25 ◦C. Flór et al. (2018) used
Rei = Re η/(1 − η) and Fr to describe the parameter regimes of their experiments.
With the non-dimensionalization we have used, Re and Gr are the non-dimensional
groups that naturally appear. Note that neglecting centrifugal buoyancy corresponds
to taking the limit ε → 0 in (2.1). The Archimedes number corresponding to the
experiments of Flór et al. (2018) is large, Ar= 6.272× 1011, and so ε is small (less
than 0.1), even for the largest Gr used in the experiments. The helical instability
that they reported, for example in their figure 3 (reproduced here in figure 1a), had
Fr = 0.53 and Rei = 521, corresponding to Gr ≈ 4.24 × 1010 and Re = 7294. In the
simulations we report on here, we fix Gr = 4 × 1010 and ε = 0.064, and consider
variations in Re. Those results are also compared to simulations ignoring centrifugal
buoyancy, obtained by setting ε = 0.

The governing equations are solved using a second-order time-splitting method
with consistent boundary conditions for the pressure, as in Lopez & Marques
(2014). Spatial discretization is via a Galerkin–Fourier expansion in θ and Chebyshev
collocation in r and z. The spatial and temporal resolution used was nr × nz × nθ =
150× 300× 26 and δt= 4× 10−7 for Re< 6300 and δt= 2× 10−7 for Re> 6300. All
numerical simulations have been performed with a linear temperature stratification
Tin= z/γ as the initial condition for temperature, or from the continuation of solutions
obtained with this initial condition, in order to mimic the experimental set-up.
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890 A9-6 J. M. Lopez and F. Marques

Other variables used in the present problem are the vorticity, ω = ∇ × u =
(ωr, ωθ , ωz), and the helicity density He= u ·ω. The kinetic energies of the azimuthal
Fourier modes of the velocity field,

Em =
1
2

∫ γ /2

−γ /2

∫ ro

ri

um · u∗mr dr dz, (2.8)

where um is the mth Fourier mode of the velocity field and u∗m is its complex
conjugate, provide a convenient way to characterize the non-axisymmetric states.

2.1. Symmetries
The domain and boundary conditions have a symmetry group generated by arbitrary
rotations Rβ around the annulus axis, and a reflection K about the mid-height plane.
Their actions on the velocity and temperature are

Rβ : [u, v,w, T](r, θ, z, t) 7→ [u, v,w, T](r, θ − β, z, t), (2.9a)
K : [u, v,w, T](r, θ, z, t) 7→ [u, v,−w,−T](r, θ,−z, t), (2.9b)

where β is an arbitrary angle. The rotations Rβ generate the group SO(2), and the
reflection K generates the group Z2 since K2 is the identity; Rβ and K commute
(KRβ =RβK), and together they generate the group G = SO(2)× Z2.

The temperature and incompressibility equations (2.2) are equivariant with respect
to G. However, in the Navier–Stokes equations (2.1), the last term is not equivariant; it
changes sign when reflected (applying K). This centrifugal buoyancy term renders the
full system to not be reflection symmetric. The denser fluid at the bottom endwall
is centrifuged outwards, while the lighter fluid near the top endwall is centrifuged
inwards, generating a large scale circulation that breaks K. In summary, if ε= 0 then
G is the symmetry group of the problem, but when ε 6= 0 the symmetry group is
only SO(2).

3. Basic states

In the limit of the annulus height-to-gap aspect ratio γ → ∞, and ignoring
centrifugal buoyancy (setting ε = 0), the basic state is described by the unidirectional
circular Couette flow (1.1). For a stationary outer cylinder this unidirectional basic
state has azimuthal velocity

v(r)= Re
η

1− η2

(
ro

r
−

r
ro

)
. (3.1)

The −r/ro contribution is due to the presence of the stationary outer cylinder. If the
outer cylinder were not there, i.e. taking the limit ro→∞, the basic state would be
a potential flow with v(r) = riRe/r. The −r/ro contribution is largest at the outer
cylinder, and only contributes an η= ri/ro fraction of the maximum potential velocity.
This amounted to less than 7 % in the experiments of Flór et al. (2018), for which η=
1/15. Such considerations led Riedinger et al. (2011) to consider the linear stability
of the potential flow driven by a rotating cylinder in a radially unbounded vertically
stratified fluid. However, the experiments of both Riedinger et al. (2011) and Flór
et al. (2018) had finite depth with a stationary floor, so that the azimuthal velocity,
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Impact of centrifugal buoyancy on strato-rotational instability 890 A9-7

Finite cylinder flow
Circular Couette flow
Potential flow

0

0.2

0.4

0.6

√/
Re

0.8

1.0

0.2 0.4 0.6
r - ri

0.8 1.0

FIGURE 2. Radial profiles of the azimuthal velocity at z= 0 (mid-height) for the finite-
cylinder flow at η = 0.07, γ = 1, σ = 6, Gr = 4 × 1010, ε = 0.064 and Re ∈ [1, 6000]
(profiles scaled with Re all collapse onto the one curve), the circular Couette flow profile
(3.1) and the potential flow profile v(r)/Re= ri/r.

being zero at the floor, had vertical gradients driving a secondary meridional flow. As
such, the experimental basic state is not unidirectional.

Figure 2 shows the numerically computed profiles (solid blue curve) of v(r)/Re
at the cylinder mid-height (z = 0) of the steady axisymmetric basic state for twelve
values of the Reynolds number in the range Re ∈ [1, 6000], all with η= 0.07, γ = 1,
σ = 6, Gr = 4 × 1010 and ε = 0.064. The differences in the profiles for different
Re only modify the velocity by one part in 105, and so the profiles collapse onto
the same (blue) curve. Also included in the figure for comparison are the profiles
corresponding to the idealized infinite-cylinder circular Couette profile (3.1) and the
potential vortex profile v(r)/Re= ri/r. The circular Couette flow and the potential flow
have no meridional flow, i.e. u=w=ωr=ωθ =0, while v and ωz are linear in Re; ωz=

−2ηRe/(1+ η) is constant for the circular Couette flow, and ωz = 0 for the potential
flow. The numerical simulations of the finite-cylinder problem agree qualitatively with
the experimental results reported in figure 6(b) of Riedinger et al. (2011), even though
they had a rectangular container instead of a circular outer cylinder. In summary, for
all basic states (potential flow, circular Couette and finite length cylinder), the primary
flow (azimuthal velocity and axial vorticity) scales linearly with Reynolds number:
v ∝ Re and ωz ∝ Re.

The primary flow consists of the azimuthal velocity v (the only non-zero component
in the potential flow and circular Couette flow) and the axial component of vorticity
ωz (the only non-zero component in circular Couette flow). With a finite cylinder,
a secondary meridional flow is driven by vortex line bending due to the nonlinear
advection term and the no-slip velocity boundary conditions at the top and bottom
endwalls. As a result, u, w, ωr and ωθ are non-zero. Figure 3 shows how the primary
and meridional components of the finite-cylinder flow scale with Re, where we have
used the global maxima of ωz and ωθ to characterize the primary and meridional
components, respectively. For very small Re, ωθ is orders of magnitude smaller than
ωz, but ωz only grows linearly with Re whereas ωθ grows quadratically with Re. By
Re ≈ 6000, the meridional flow is approximately 17 % of the primary flow, and as
will be shown in the following sections, this is the level which leads to instability
of the basic state. Note that for small Re, the velocity and vorticity tend to become
orthogonal; they are exactly orthogonal for the circular Couette flow. Also, the
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FIGURE 3. Variation of the maximum in the axial and azimuthal vorticity components
with Re, for η= 0.07, γ = 1, σ = 6, Gr= 4× 1010 and ε = 0.064.

Re
 =

 1
00

r√ ¥ ør øœ øz

Re
 =

 6
00

0

FIGURE 4. Vortex lines rv, streamlines ψ and the three components of vorticity ωr,
ωθ and ωz for the basic state at Re as indicated. Eight contours are shown, equispaced
between the minimum and maximum values of the variables. Parameter values: η= 0.07,
γ = 1, σ = 6, Gr= 4× 1010 and ε = 0.064.

helicity density increases with increasing Re. Ignoring centrifugal buoyancy (ε = 0),
the helicity (volume integral of the helicity density) vanishes due to the K reflection
invariance of the flow, but with ε 6= 0 the helicity does not vanish.

Figure 4 shows contours of angular momentum rv, streamfunction ψ (where
[∂2/∂z2

+ ∂2/∂r2
− 1/r ∂/∂r]ψ = −rωθ ), and the three components of vorticity at

Re= 100 and Re= 6000. The differences in the spatial structures at the two Re values
are minimal, (except for the scalings in Re, linear for the primary flow components
and quadratic for the meridional components), and localized at the inner wall and
endwalls. The vorticity is concentrated in a thin boundary layer at the inner cylinder
wall. The thickness of this boundary layer is independent of Re, but its intensity
scales linearly with Re (dominated by the contribution from ωz). The large-scale
circulation induced by the secondary flow is localized in thin endwall boundary
layers, as illustrated by the streamfunction contours in figure 4. This is due to the
strong stable vertical temperature gradient inhibiting the vertical motion of the fluid
outside of boundary layers. There is also a weak breaking of the reflection symmetry
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FIGURE 5. (a) Vertical profiles of the radial velocity near the rotating inner cylinder at
r= ri+ 0.011, for the basic state with centrifugal buoyancy (ε = 0.064, blue) and without
(ε = 0, red), and (b,c) close ups of the profiles near the top and bottom endwalls.
Parameter values: η= 0.07, γ = 1, σ = 6, Gr= 4× 1010 and Re= 6000.

K due to the centrifugal buoyancy (ε = 0.064). In order to quantify the intensity of
the secondary flow and the symmetry breaking, we have plotted in figure 5 vertical
profiles of the radial velocity near the inner cylinder (at r= ri+ 0.011, where u(r) is
maximal), for the basic states with and without the centrifugal term, at Re=6000. The
secondary flow is confined near the top and bottom endwalls, in agreement with the
ψ contours shown in figure 4, and the maximum of u is approximately 0.9 % of the
maximum of the primary flow (which is vmax = Re). The solution without centrifugal
buoyancy (ε = 0, blue curve), is K reflection symmetric, while the solution including
centrifugal buoyancy (ε= 0.064, red curve), is not. The secondary circulation is more
intense near the bottom when ε 6= 0, due to centrifugal buoyancy, with the maximum
value of u in the bottom boundary layer approximately 10 % larger than the maximum
value of u in the top boundary layer. This is a measure of the symmetry breaking
due to the centrifugal effect on the secondary flow, for the basic state at Re= 6000.

4. Helical rotating wave instabilities ignoring centrifugal buoyancy

The basic state, either with or without centrifugal buoyancy effects being considered,
loses stability as Re is increased beyond approximately 6000 for the radius ratio
η= 0.07, aspect ratio γ = 1, Prandtl number σ = 6 and Grashof number Gr= 4× 1010

considered in this study. Although the basic states with (ε = 0.064) and without
(ε = 0) buoyancy effects only differ slightly, as described in the previous section, the
differences in their instabilities are significant. We begin by describing the instabilities
ignoring buoyancy effects in this section, and then in the next section we explore the
consequences of including them.

Neglecting buoyancy effects (ε = 0) endows the system with the additional
symmetry K, the invariance to reflection about the annular mid-height. As described
in § 2.1, the ε = 0 system and its basic state have SO(2)× Z2 symmetry. Bifurcations
from the basic state may either preserve or break parts or all of the symmetries.
As in the experiments of Riedinger et al. (2011) and Flór et al. (2018), the basic
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890 A9-10 J. M. Lopez and F. Marques

state becomes unstable via a Hopf bifurcation that breaks the SO(2) axisymmetry.
Generically, SO(2) symmetry is broken via a Hopf bifurcation and the resulting limit
cycle is a rotating wave with azimuthal wavenumber m (Marques & Lopez 2006).
Also in agreement with the experiments, we find that m= 1. The limit cycle consists
of two helical waves, one directed downward and the other upward, which combine
to form a standing helical wave, with the property of being a rotating wave (RW)

R−βRW(t)=RW(t+ τβ/2π), (4.1)

where τ is the period of the rotating wave. Note that for an m = 1 rotating wave,
advancing half a period is equivalent to a π rotation: Rπ RW(t)=RW(t+ τ/2). The
reflection symmetry K may either be preserved or broken at the Hopf bifurcation. If
it is preserved, the rotating wave is pointwise invariant and we shall denote it RWK.
It has the property that applying K at any point in time leaves it invariant:

KRWK(t)=RWK(t). (4.2)

If the K reflection is broken at the Hopf bifurcation, the rotating wave is setwise
invariant and we shall denote it RWC . At any instant in time, reflecting RWC results
in RWC half a period later

KRWC(t)=RWC(t+ τ/2). (4.3)

However, as noted above, for an m = 1 rotating wave, advancing half a period is
the same as applying a rotation of angle π, Rπ. Therefore RWC is also pointwise
invariant, but with respect to the centrosymmetry C, whose action is

C : [u, v,w, T](r, θ, z, t) 7→ [u, v,−w,−T](r, θ −π,−z, t), (4.4)

so that
CRWC(t)=RπKRWC(t)=RπRWC(t+ τ/2)=RWC(t). (4.5)

The centrosymmetry C consists of a rotation of π around the cylinder axis composed
with the K reflection: C =RπK. It can also be thought of as a reflection through the
origin, and since C2 is the identity, like K it also generates a Z2 group.

As with RWK, RWC also consists of two helical waves, one directed down and
the other up, which combine to form a standing helical wave, with the property of
being a rotating wave; RWK and RWC look quite similar, but a clear distinction
is that RWK and RWC have opposite parities in z. Figure 6 shows an example of
each, using isocontours of the helicity density. Supplementary movie 1 (available at
https://doi.org/10.1017/jfm.2020.135) animates them, illustrating their rotating wave
spatio-temporal structure.

Figure 7(a) is a bifurcation diagram showing the variation of the modal energy E1
with Re. At Re≈ 6090, the kinetic energy in azimuthal wavenumber m= 1 begins to
grow linearly with increasing Re, indicative of a supercritical Hopf bifurcation that
has broken axisymmetry and spawns a rotating wave. Figure 7(b) shows how the
frequency of the bifurcating rotating wave varies with Re. Note that we present the
frequency as ω/Re so that it is in the inertial time scale (ω is the frequency in the
viscous time scale used to compute the flow). In the inertial time scale, the frequency
ω/Re≈ 1.8 with very little variation with Re. The two possible types of bifurcating
rotating waves, RWK and RWC , are stable in different Re ranges, and change from one
to the other. This is likely due to the fact that these rotating waves are the result of
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Impact of centrifugal buoyancy on strato-rotational instability 890 A9-11

(a) (b)

FIGURE 6. Isosurfaces of helicity density at levels He=±106 for rotating helical wave
states (a) RWC at Re= 6150 and (b) RWK at Re= 6250, both with ε = 0 (no centrifugal
buoyancy), Gr = 4× 1010, σ = 6, η = 0.07 and γ = 1. The grey disks drawn at the top
and bottom endwalls have radii ri + 0.2, i.e. they extend out to 20 % of the radial gap.
Supplementary movie 1 animates both.
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FIGURE 7. Variation with Re of (a) the modal energy E1 and (b) angular frequency
(scaled by Re) of the rotating waves RWC and RWK for η = 0.07, γ = 1, σ = 6,
Gr= 4× 1010 and ε = 0.
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FIGURE 8. Variation with Re of (a) the modal energy E1 and (b) frequencies (scaled by
Re) of rotating wave RW and modulated rotating waves MRW and MRW2 (time-averaged
E1 is shown for MRW and MRW2), for η = 0.07, γ = 1, σ = 6, Gr = 4× 1010 and ε =
0.064.

the interaction of two helical waves originating at the corners where the rotating inner
cylinder meets the top and bottom endwalls, and grow axially inward with increasing
Re and interact at the cylinder mid-height (z= 0), where the helical waves have the
smallest intensity. Therefore the resulting rotating waves and their stability are very
sensitive to small changes, and in particular to the variation with Re. The energy E1
and the frequency ω/Re change continuously with Re, regardless of the solution type.
In the parameter regime considered, RWC bifurcates first, and after a relative change in
Re of approximately 1.7 %, RWK becomes stable, suggesting that the system is close
to a double-Hopf bifurcation where the two states with different symmetries, RWC and
RWK, bifurcate simultaneously. Nevertheless, these symmetry-related peculiarities are
a direct consequence of ignoring the centrifugal buoyancy.

5. Centrifugal buoyancy effects on the instabilities
When the centrifugal buoyancy is included in the governing equations (2.1), i.e.

taking ε 6= 0, the system is no longer reflection symmetric, and the symmetry group
reduces to SO(2). Figure 8 shows the variation of E1 and the frequencies of the
bifurcated states with increasing Re when centrifugal buoyancy effects (ε = 0.064)
are taken into account. The basic state undergoes a supercritical Hopf bifurcation to
a rotating wave RW with m= 1 and frequency ω1. This happens at Re≈ 5970, which
is smaller (approximately 2 %) than the critical Re when ε = 0. The bifurcated state,
shown in figure 9(a) at Re = 6100, clearly has no symmetry in z. The centrifugal
buoyancy term drives the denser (colder) fluid near the bottom endwall radially
outward, enhancing the centrifugal instability mechanisms near the bottom of the
cylinder, while the lighter (hotter) fluid near the top endwall is centrifuged inward,
reducing the centrifugal instability. As seen in figure 9(a), the helical wave is
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Impact of centrifugal buoyancy on strato-rotational instability 890 A9-13

(a) (b)

FIGURE 9. Isosurfaces of helicity density for (a) RW at Re = 6100 and (b) MRW at
Re=6500, both with ε=0.064 (accounting for centrifugal buoyancy), Gr=4×1010, σ =6,
η = 0.07 and γ = 1. The isosurface levels are (a) He = ±106 and (b) He = ±3 × 106.
Supplementary movie 2 animates RW in the inertial frame, and movie 3 animates MRW
both in the inertial frame and in a frame rotating at angular frequency ω1.

generated at the bottom of the cylinder and progresses upwards, while there is no
centrifugal instability at the top endwall. Supplementary movie 2 animates the RW
shown in figure 9(a).

Increasing the Reynolds number to Re≈ 6220, a helical wave appears at the top of
the cylinder. Both helical waves meet near the cylinder mid-plane, but a little closer
to the top endwall. In contrast to the two symmetric helical waves of RWK and RWC
described earlier with ε= 0, these two waves are different. The one on the lower half
of the cylinder is more intense, and their frequencies are slightly different. They both
rotate prograde with the inner cylinder, but the bottom helical wave rotates slightly
faster than the top helical wave. This results in a modulated rotating wave state MRW.
The difference in the two frequencies shows up as a small beat frequency, which is
an order of magnitude smaller than either of the two frequencies. We shall call this
beat frequency ω2. Figure 10(a) shows the power spectral density (PSD) of the time
series obtained from the axial velocity at a point (r, θ, z) = (ri + 0.05, 0, −0.25) of
the rotating wave RW at Re= 6100; it consists of ω1 and its harmonics. Figure 10(b)
is the corresponding PSD of MRW at Re= 6500. It consists of ω1 and its harmonics
together with ω2 and its harmonics. The two frequencies are very close to being
commensurate, with ω1/ω2 ≈ 15; the ‘split’ peaks near 0.5ω1 and 1.5ω1 result from
their incommensurability. A snapshot of MRW at Re= 6500 is shown in figure 9(b).
This state closely resembles the experimental flow obtained by Flór et al. (2018),
shown in figure 1(a). Supplementary movie 3 animates MRW, both in the inertial
(laboratory) frame and in a frame that rotates with angular frequency ω1. In this
rotating frame, the helical wave from the bottom is frozen and the helical wave from
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FIGURE 10. Power spectral density (PSD) of the axial velocity at a point close to the
rotating inner cylinder, w(r = ri + 0.05, θ = 0, z=−0.25), for RW, MRW and MRW2 at
η= 0.07, γ = 1, σ = 6, Gr= 4× 1010, ε = 0.064 and Re as indicated.

FIGURE 11. Snapshots of MRW at Re = 6500 in the rotating frame that rotates with
angular frequency ω1. The time between each snapshot is 9.2× 10−4 in viscous time units,
corresponding to 5.98 inertial time units, so that each set of eight snapshots corresponds
to approximately one period of the ω2 oscillation (2π/ω2≈50.27). Supplementary movie 3
animates MRW, both in the inertial (laboratory) frame and in the rotating frame.
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Impact of centrifugal buoyancy on strato-rotational instability 890 A9-15

FIGURE 12. Snapshots of MRW2 at Re = 6510, in the rotating frame that rotates
with angular frequency ω1. The time between each snapshot is 1.584 × 10−4 in
viscous time units, corresponding to 1.03 inertial time units, so that each set of six
snapshots corresponds to approximately one period of the ω3 oscillation (2π/ω3 ≈ 6.16).
Supplementary movie 4 animates MRW2, both in the inertial (laboratory) frame and in
the rotating frame.

the top rotates in the retrograde direction at the slow frequency ω2; it is a relative
rotating wave. There is a torsion between the two behaviours near the mid-height,
and this results in a ‘snapping’ between the two helices. A sequence of snapshots of
this MRW in the rotating frame at times covering two periods of the ω2 oscillation
further illustrate this behaviour (see figure 11).

By further increasing the Reynolds number, a more complicated state appears,
labelled MRW2 in figure 8. The PSD of MRW2 at Re = 6510 is presented in
figure 10(c). A new frequency ω3 emerges, which is close to 0.5ω1, suggestive
of a period doubling, but in fact the relationship 2ω3 − ω1 ≈ ω2 is apparent. The
detuning in this relationship shows up as a very low frequency beating, with
2ω3 − ω1 − ω2 ∼ 10−2Re. Supplementary movie 4 animates MRW2 in both the
laboratory frame and the rotating frame associated with ω1. As with MRW, in the
rotating frame the upper part of MRW2 has a slow nearly constant rotation, associated
with the beat frequency ω2. The lower part is essentially not rotating, like the lower
part of MRW, but it has a large-scale ‘axisymmetric’ pulsing whose frequency is
ω3. Figure 12 shows 12 snapshots of MRW2 in the ω1 rotating frame, covering
approximately two ω3 periods. MRW2 has three incommensurate frequencies, but in
the rotating frame it is simply quasi-periodic, a relative two-torus.

6. Discussion and conclusions
The helical instability mode experimentally observed by Flór et al. (2018) when

the Froude number Fr < 1 in a stratified Taylor–Couette flow with a very wide gap
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annulus of unit aspect ratio is very different to the instabilities reported in previous
experimental investigations of stratified Taylor–Couette flow (e.g. Boubnov, Gledzer
& Hopfinger 1995; Boubnov et al. 1996; Caton, Janiaud & Hopfinger 2000; Le Bars
& Le Gal 2007; Ibanez, Swinney & Rodenborn 2016; Rüdiger et al. 2017; Seelig,
Harlander & Gellert 2018; Park et al. 2018). Those other experiments were mostly
conducted in the narrow gap regime, with radius ratios in the range η≈ 0.8–0.9, with
a few considering η as small as 0.3. These are all considerably larger than the radius
ratio of Flór et al. (2018), η ≈ 0.07. One consequence of η being relatively large
is that the instability modes fill the entire annular gap. In contrast, the instability
in the experiments of Flór et al. (2018) is a helical wave that is very localized to
the rotating inner cylinder. The previous stratified Taylor–Couette flow experiments
were all conducted using annuli with large height-to-gap aspect ratios, typically with
γ between 10 and 50. They claim to be motivated to consider large γ in order to
minimize the effects of endwalls and to try to accommodate the theoretical idealization
of a base flow that is unidirectional with instability modes that are axially periodic.
The experiment of Flór et al. (2018) had γ ≈ 1. Endwall effects were recognized
by them, and they considered the instability to originate at the corners where the
rotating cylinder meets the top and bottom. Nevertheless, they concluded their paper
with the comment: ‘the dynamics of these waves and the underlying mechanism of
the instability remain to be explained’. This is precisely what we have set out to do
in this study.

In our simulations, we used parameters that are very close to those of the
experiments of Flór et al. (2018), except that we use temperature as the stratifying
agent rather than salt. Temperature diffuses approximately 100 times faster than salt,
but these molecular processes seem to not be important for the helical instability.
That the Prandtl number does not play a major role in the helical wave instability is
borne out by the good agreement between our numerical simulations with σ = 6 and
the experiments with Schmidt number of order 103, further reinforcing our conclusion
that the instability is hydrodynamic rather than buoyancy in nature: the vortex line
bending at the corners drives a meridional flow which at a critical Re becomes
unstable to helical waves. Buoyancy of course is relevant; the strong stratification
impacts the flow, causing the meridional flow to be localized in thin boundary layers,
and then the centrifugal buoyancy results in the flow near the lower corner to lose
stability at a lower Re than that at the top corner.

For η=0.07, γ =1, σ =6, Gr=4×1010 and ε=0.064, we find the critical Re≈6×
103. These parameters are very close to those where Flór et al. (2018) experimentally
observed the helical instability, which is reproduced in figure 1(a). The helical waves
in both their experiment and in our simulations grow from the bottom corner where
the rotating cylinder meets the stationary endwall. The azimuthal wavenumber is m=
1 and the axial wavenumber is 14. The axial wavenumber is estimated as in the
experiments, by counting the average number of waves over the depth of the annulus.
The experimental result reproduced in figure 1(a) is for Rei= Re η/(1− η)≈ 521 and
Fr =Ω/N = (Re/RN) (1− η)/η ≈ 0.53. Our critical Re corresponds to Rei ≈ 451 and
Fr ≈ 0.4. The theoretical stability analysis of the potential flow by Riedinger et al.
(2011) would suggest that in this parameter regime (Rei ≈ 451 and Fr ≈ 0.4), the
potential flow is stable, whereas their experimental results, using a slender rotating
cylinder in a large rectangular tank with stably stratified fluid, report an m= 1 helical
instability for Rei ≈ 450 and Fr≈ 0.6. Given the geometric differences between their
experiment in a rectangular container and the annular geometry used in Flór et al.
(2018) and in the present study, it is quite possible that the instabilities are related.
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The frequency of the helical waves at onset is ω1/Re≈ 1.8 in the inertial time scale,
but in the buoyancy time scale it is ω1/RN ≈ 0.054, which is very small. The linear
dispersion relation gives that internal waves would propagate in the linearly stratified
medium at an angle inclined to the horizontal of only β = arcsin 0.54≈ 3◦. We have
not observed any significant propagation of internal waves in our simulations. If they
are present, they are very weak compared with other flow features and do not play
any significant dynamic role in the observed bifurcations.

In the experiments of Flór et al. (2018), since they have the top open, there is no
K reflection symmetry. However, even if the geometry were perfect with the annulus
fully enclosed and filled, there is still no K symmetry due to centrifugal buoyancy
effects. The parameter ε quantifying centrifugal buoyancy is small (approximately
6 % compared to one). We have used ε = 0.064 in the simulations; this value was
estimated to correspond to the experimental case of Flór et al. (2018), reproduced
here in figure 1(a). This small number is, however, not small compared to zero,
and its effects are dynamically important not just near onset, but beyond as well,
eliminating much of the peculiar degeneracies associated with K and C-conjugate
states. Similar rationalization of degenerate dynamics resulting from neglecting
centrifugal buoyancy has been reported in rotating convection studies (Marques
et al. 2007; Rubio, Lopez & Marques 2010; Curbelo et al. 2014). In the present
problem, centrifugal buoyancy is the explanation for the experimentally observed
flow asymmetry. Moreover, accounting for endwall effects is also found to be critical.
The instabilities are generated at the corners where the inner cylinder meets the
endwalls, rather than uniformly along the inner cylinder. Irrespective of how large
the aspect ratio γ is made, the endwall effects appear before other instabilities, and
propagate toward the cylinder mid-height. As in many other physical realizations of
Taylor–Couette flows, even for large γ , endwall effects cannot be neglected and they
generate large-scale dynamics (Benjamin 1978a,b; Benjamin & Mullin 1981; Ahlers
& Cannell 1983; Lorenzen, Pfister & Mullin 1983; Cliffe, Kobine & Mullin 1992;
Lopez, Marques & Shen 2000; Czarny et al. 2002; Abshagen et al. 2005a,b, 2008;
Avila et al. 2008; Lopez 2016).

Acknowledgements

This work was supported by the Spanish Ministry of Education and Science/FEDER
grants FIS2017-85794-P and PRX18/00179.

Declaration of interests

The authors report no conflict of interest.

Supplementary movies
Supplementary movies are available at https://doi.org/10.1017/jfm.2020.135.

REFERENCES

ABSHAGEN, J., LOPEZ, J. M., MARQUES, F. & PFISTER, G. 2005a Mode competition of rotating
waves in reflection-symmetric Taylor–Couette flow. J. Fluid Mech. 540, 269–299.

ABSHAGEN, J., LOPEZ, J. M., MARQUES, F. & PFISTER, G. 2005b Symmetry breaking via global
bifurcations of modulated rotating waves in hydrodynamics. Phys. Rev. Lett. 94, 074501.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
47

.8
3.

20
1.

74
, o

n 
11

 M
ar

 2
02

0 
at

 1
5:

41
:1

4,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

13
5

https://doi.org/10.1017/jfm.2020.135
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.135


890 A9-18 J. M. Lopez and F. Marques

ABSHAGEN, J., LOPEZ, J. M., MARQUES, F. & PFISTER, G. 2008 Bursting dynamics due to a
homoclinic cascade in Taylor–Couette flow. J. Fluid Mech. 613, 357–384.

AHLERS, G. & CANNELL, D. S. 1983 Vortex-front propagation in rotating Couette–Taylor flow. Phys.
Rev. Lett. 50, 1583–1586.

AVILA, M. 2012 Stability and angular-momentum transport of fluid flows between corotating cylinders.
Phys. Rev. Lett. 108, 124501.

AVILA, M., GRIMES, M., LOPEZ, J. M. & MARQUES, F. 2008 Global endwall effects on centrifugally
stable flows. Phys. Fluids 20, 104104.

BARCILON, V. & PEDLOSKY, J. 1967 On the steady motions produced by a stable stratification in a
rapidly rotating fluid. J. Fluid Mech. 29, 673–690.

BENJAMIN, T. B. 1978a Bifurcation phenomena in steady flows of a viscous fluid. I. Theory. Proc.
R. Soc. Lond. A 359, 1–26.

BENJAMIN, T. B. 1978b Bifurcation phenomena in steady flows of a viscous fluid. II. Experiments.
Proc. R. Soc. Lond. A 359, 27–43.

BENJAMIN, T. B. & MULLIN, T. 1981 Anomalous modes in the Taylor experiment. Proc. R. Soc.
Lond. A 377, 221–249.

BOUBNOV, B. M., GLEDZER, E. B. & HOPFINGER, E. J. 1995 Stratified circular Couette flow:
instability and flow regimes. J. Fluid Mech. 292, 333–358.

BOUBNOV, B. M., GLEDZER, E. B., HOPFINGER, E. J. & ORLANDI, P. 1996 Layer formation and
transitions in stratified circular Couette flow. Dyn. Atmos. Oceans 23, 139–153.

CATON, F., JANIAUD, B. & HOPFINGER, E. J. 2000 Stability and bifurcations in stratified Taylor–
Couette flow. J. Fluid Mech. 419, 93–124.

CLIFFE, K. A., KOBINE, J. J. & MULLIN, T. 1992 The role of anomalous modes in Taylor–Couette
flow. Proc. R. Soc. Lond. A 439, 341–357.

CURBELO, J., LOPEZ, J. M., MANCHO, A. M. & MARQUES, F. 2014 Confined rotating convection
with large Prandtl number: centrifugal effects on wall modes. Phys. Rev. E 89, 013019.

CZARNY, O., SERRE, E., BONTOUX, P. & LUEPTOW, R. M. 2002 Interaction between Ekman pumping
and the centrifugal instability in Taylor–Couette flow. Phys. Fluids 15, 467–477.

FLÓR, J. B., HIRSCHBERG, L., OOSTENRIJK, B. H. & VAN HEIJST, G. J. F. 2018 Onset of
centrifugal instability at a rotating cylinder in a stratified fluid. Phys. Fluids 30, 084103.

GELLERT, M. & RÜDIGER, G. 2009 Stratorotational instability in Taylor–Couette flow heated from
above. J. Fluid Mech. 623, 375–385.

HART, J. E. 1979 Finite amplitude baroclinic instability. Annu. Rev. Fluid Mech. 11, 147–172.
HUA, B. L., LE GENTIL, S. & ORLANDI, P. 1997 First transitions in circular Couette flow with

axial stratification. Phys. Fluids 9, 365–375.
IBANEZ, R., SWINNEY, H. L. & RODENBORN, B. 2016 Observations of the stratorotational instability

in rotating concentric cylinders. Phys. Rev. Fluids 1, 053601.
LE BARS, M. & LE GAL, P. 2007 Experimental analysis of the stratorotational instability in a

cylindrical Couette flow. Phys. Rev. Lett. 99, 064502.
LE DIZÈS, S. & RIEDINGER, X. 2010 The strato-rotational instability of Taylor–Couette and Keplerian

flows. J. Fluid Mech. 660, 147–161.
LECLEREQ, C., NGUYEN, F. & KERSWELL, R. R. 2016 Connections between centrifugal,

stratorotational, and radiative instabilities in viscous Taylor–Couette flow. Phys. Rev. E 94,
043103.

LOPEZ, J. M. 2016 Subcritical instability of finite circular Couette flow with stationary inner cylinder.
J. Fluid Mech. 793, 589–611.

LOPEZ, J. M. & MARQUES, F. 2014 Three-dimensional instabilities in a discretely heated annular
flow: onset of spatio-temporal complexity via defect dynamics. Phys. Fluids 26, 064102.

LOPEZ, J. M., MARQUES, F. & AVILA, M. 2013 The Boussinesq approximation in rapidly rotating
flows. J. Fluid Mech. 737, 56–77.

LOPEZ, J. M., MARQUES, F. & SHEN, J. 2000 Endwall effects in a periodically forced centrifugally
unstable flow. Fluid Dyn. Res. 27, 91–108.

LORENZEN, A., PFISTER, G. & MULLIN, T. 1983 End effects on the transition to time-dependent
motion in the Taylor experiment. Phys. Fluids 26, 10–13.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
47

.8
3.

20
1.

74
, o

n 
11

 M
ar

 2
02

0 
at

 1
5:

41
:1

4,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

13
5

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.135


Impact of centrifugal buoyancy on strato-rotational instability 890 A9-19

MARQUES, F. & LOPEZ, J. M. 2006 Onset of three-dimensional unsteady states in small aspect-ratio
Taylor–Couette flow. J. Fluid Mech. 561, 255–277.

MARQUES, F., MERCADER, I., BATISTE, O. & LOPEZ, J. M. 2007 Centrifugal effects in rotating
convection: axisymmetric states and three-dimensional instabilities. J. Fluid Mech. 580,
303–318.

MOLEMAKER, M. J., MCWILLIAMS, J. C. & YAVNEH, I. 2001 Instability and equilibration of
centrifugally stable stratified Taylor–Couette flow. Phys. Rev. Lett. 86, 5270–5273.

PARK, J. & BILLANT, P. 2013 The stably stratified Taylor–Couette flow is always unstable except
for solid-body rotation. J. Fluid Mech. 725, 262–280.

PARK, J., BILLANT, P., BAIK, J.-J. & SEO, J. M. 2018 Competition between the centrifugal and
strato-rotational instabilities in the stratified Taylor–Couette flow. J. Fluid Mech. 840, 5–24.

PLOUGONVEN, R. & ZHANG, F. 2014 Internal gravity waves from atmospheric jets and fronts.
Rev. Geophys. 52, 33–76.

RIEDINGER, X., LE DIZÈS, S. & MEUNIER, P. 2011 Radiative instability of the flow around a
rotating cylinder in a stratified fluid. J. Fluid Mech. 672, 130–146.

RUBIO, A., LOPEZ, J. M. & MARQUES, F. 2010 Onset of Küppers–Lortz-like dynamics in finite
rotating thermal convection. J. Fluid Mech. 644, 337–357.

RÜDIGER, G., SEELIG, T., SCHULTZ, M., GELLERT, M., EGBERS, C. & HARLANDER, U. 2017 The
stratorotational instability of Taylor–Couette flows with moderate Reynolds numbers. Geophys.
Astrophys. Fluid Dyn. 111, 429–447.

SEELIG, T., HARLANDER, U. & GELLERT, M. 2018 Experimental investigation of stratorotational
instability using a thermally stratified system: instability, waves and associated momentum
flux. Geophys. Astrophys. Fluid Dyn. 112, 239–264.

SHALYBKOV, D. & RÜDIGER, G. 2005 Stability of density-stratified viscous Taylor–Couette flows.
Astron. Astrophys. 438, 411–417.

TAYLOR, G. I. 1923 Stability of a viscous liquid contained between two rotating cylinders. Phil.
Trans. R. Soc. Lond. A 223, 289–343.

YAVNEH, I., MCWILLIAMS, J. C. & MOLEMAKER, M. J. 2001 Non-axisymmetric instability of
centrifugally stable stratified Taylor–Couette flow. J. Fluid Mech. 448, 1–21.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
47

.8
3.

20
1.

74
, o

n 
11

 M
ar

 2
02

0 
at

 1
5:

41
:1

4,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

13
5

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.135

	Impact of centrifugal buoyancy on strato-rotational instability
	Introduction
	Governing equations
	Symmetries

	Basic states
	Helical rotating wave instabilities ignoring centrifugal buoyancy
	Centrifugal buoyancy effects on the instabilities
	Discussion and conclusions
	Acknowledgements
	References


